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Lanlan Zhao1,2†, Cheng Wang1,2†, Shanxin Peng3, Xiaosong Zhu3, Ziyi Zhang1,2, Yanyan Zhao1,2, Jinling Zhang3, 
Guoping Zhao1,2,4,5, Tao Zhang1,2*, Xueyuan Heng3* and Lei Zhang1,2,4*   

Abstract 

Background: Integrative analysis approaches of metagenomics and metabolomics have been widely developed 
to understand the association between disease and the gut microbiome. However, the different profiling patterns of 
different metabolic samples in the association analysis make it a matter of concern which type of sample is the most 
closely associated with gut microbes and disease. To address this lack of knowledge, we investigated the association 
between the gut microbiome and metabolomic profiles of stool, urine, and plasma samples from ischemic stroke 
patients and healthy subjects.

Methods: We performed metagenomic sequencing (feces) and untargeted metabolomics analysis (feces, plasma, 
and urine) from ischemic stroke patients and healthy volunteers. Differential analyses were conducted to find key dif-
ferential microbiota and metabolites for ischemic stroke. Meanwhile, Spearman’s rank correlation and linear regression 
analyses were used to study the association between microbiota and metabolites of different metabolic mixtures.

Results: Untargeted metabolomics analysis shows that feces had the most abundant features and identified metab-
olites, followed by urine and plasma. Feces had the highest number of differential metabolites between ischemic 
stroke patients and the healthy group. Based on the association analysis between metagenomics and metabolomics 
of fecal, urine, and plasma, fecal metabolome showed the strongest association with the gut microbiome. There are 
1073, 191, and 81 statistically significant pairs (P < 0.05) in the correlation analysis for fecal, urine, and plasma metabo-
lome. Fecal metabolites explained the variance of alpha-diversity of the gut microbiome up to 31.1%, while urine and 
plasma metabolites only explained the variance of alpha-diversity up to 13.5% and 10.6%. Meanwhile, there were 
more significant differential metabolites in feces than urine and plasma associated with the stroke marker bacteria.

Conclusions: The systematic association analysis between gut microbiome and metabolomics reveals that fecal 
metabolites show the strongest association with the gut microbiome, followed by urine and plasma. The findings 
would promote the association study between the gut microbiome and fecal metabolome to explore key factors that 
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Background
The human gut microbiome plays a key role in under-
standing the etiology of diseases such as hypertension, 
diabetes, and cardiovascular diseases [1–4]. The dynamic 
changes of certain gut bacteria are associated with the 
changes of clinical blood markers and metabolites [5–7]. 
Metabolomics profiles the qualitative and quantitative 
state of small molecules, such as amino acids in complex 
metabolic mixtures, and is inherently associated with the 
microbiome [8, 9]. For example, the fecal metabolome 
was specifically regarded as a direct readout of metabolic 
functions of gut microbiota [10]. Cooperative alterna-
tions of the gut microbiome and host metabolome pro-
vide integrated information to elucidate the role of gut 
microbiota and metabolites in the disrupted pathways 
[11, 12].

Integrative analysis of microbiome and metabolomics 
has been widely adopted as an effective strategy to under-
stand the association between health outcomes and 
microbiome [13, 14]. Metabolomes from different bio-
logical sample sources have distinct profiles and show 
different extent of associations with the gut microbiome 
[8, 15, 16]. Therefore, the choice of different metabolic 
samples in the association analysis is critical to inves-
tigate the interplay between gut microbiota and host 
metabolites. For example, the TwinsUK cohort study 
revealed that gut microbiome and fecal metabolites were 
strongly associated because 90% of the bacteria species 
were associated with 82% of the fecal metabolites, while 
only 34% of the bacteria species showed association with 
24% of the blood metabolites [8]. A nutrition interven-
tion study showed that the gut microbiome and the fecal 
metabolome remained significantly perturbed even after 
the urine and plasma metabolomes recovered their bal-
ance [16].

Stroke is one of the most prevalent cardiovascular dis-
eases, which is the second leading cause of death and a 
major cause of disability worldwide [17, 18]. Cerebral 
ischemic stroke (CIS) caused by disruption of brain blood 
flow leads to permanent neurological deficits, dementia, 
and death [19]. Recent studies demonstrated that sig-
nificant dysbiosis of the gut microbiota occurred in CIS 
patients. For example, CIS patients had more oppor-
tunistic pathogens, such as Enterobacter, Megasphaera, 
Oscillibacter, and Desulfovibrio, and fewer commensal or 
beneficial genera including Bacteroides, Prevotella, and 
Faecalibacterium [20, 21]. Meanwhile, several studies 

showed that stroke patients had low short chain fatty 
acids (SCFAs) levels in feces [21] and high trimethyl-
amine oxide (TMAO) level in plasma [22–24], suggesting 
that the metabolic dysregulation is associated with the 
pathogenic mechanism of CIS. Moreover, the association 
analysis of gut microbiome and metabolome revealed 
ischemic stroke related microbes were associated with 
characteristic metabolites. For instance, integrated 16S 
rRNA gene sequencing and metabolomics analysis of 
plasma showed that Proteobacteria was positively corre-
lated with L-phenylalanine, while it was negatively cor-
related with eicosapentaenoic acid (EPA), which might 
serve as potential diagnostic and therapeutic markers for 
ischemic stroke [25].

To evaluate which type of metabolome from various 
metabolic mixtures is more closely related to the fecal 
metagenome, we present a heuristic method to inves-
tigate the associations between fecal metagenome and 
various metabolomes of fecal, urine, and blood sam-
ples in CIS patients and healthy subjects. The associa-
tion between metagenome and metabolome is evaluated 
based on the Spearman’s rank correlation and linear 
regression model. A user-friendly web server is devel-
oped to allow researchers to conduct the association 
analysis and visualization efficiently. Our study reveals 
that different metabolic mixtures (plasma, urine, and 
feces) show characteristic metabolic dysregulation asso-
ciated with CIS. Fecal metabolome shows the strongest 
association with metagenome. More importantly, a sub-
stantial number of fecal metabolites are associated with 
bacteria species related to CIS.

Methods
Study subjects
A total of 60 subjects were recruited for this study. 30 
patients with CIS were enrolled from Qilu Hospital 
of Shandong University between May 2017 and Janu-
ary 2018. They had been diagnosed by skull computed 
tomography examination. And 30 CIS patients did not 
suffer from any pre-existing metabolic or gut disease. 
In addition, 30 healthy volunteers who were examined 
to ensure that they had no metabolic, cardiovascular or 
cerebrovascular diseases or cancer were included as the 
standard control group. All these individuals did not 
receive any antibiotics or probiotics at least one month 
prior to the collection of biospecimens.

are associated with diseases. We also provide a user-friendly web server and a R package to facilitate researchers to 
conduct the association analysis of gut microbiome and metabolomics.

Keywords: Metabolomics, Microbiome, Integrative analysis, Gut microbiota, Ischemic stroke
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Clinical measurements
Blood samples were gathered from patients with stroke 
at admission and healthy subjects at the physical exami-
nation center. Serum levels of low-density lipoprotein 
(LDL), the glucose of blood (GLU), high-density lipo-
protein (HDL), uric acid (UA), triglycerides (TG), and 
homocysteine (HCY) were measured using standard 
techniques.

Sample collection for metagenomics and metabolomics
The stool samples freshly collected from each participant 
were immersed in absolute ethyl alcohol, transported 
to the laboratory with ice pack as soon as possible, and 
finally stored at − 80 °C freezer. The morning urine was 
collected, and each 1 mL of urine was mixed with 50μL 
of 0.42% sodium azide preservative. The pH of urine was 
adjusted to 7.0 with 1 M Tris–HCl (pH 7.0) and stored at 
− 80 °C freezer. The morning fasting blood was collected 
and centrifuged to obtain the plasma, which was stored 
at − 80 °C freezer for metabolomics analysis.

Statistical analysis of clinical data
Descriptive statistics, including mean (standard devia-
tion: SD) or median (interquartile range: IQR) for quan-
titative variables and percentage for categorical variables, 
were calculated to examine the baseline characteristics. 
Differences in clinical indices among groups were deter-
mined using χ2 test and Student’s t-test or Wilcoxon 
Rank-Sum tests for categorical and quantitative variables, 
respectively. Crude odds ratios and their 95% confidence 
intervals were estimated using univariate logistic regres-
sion models.

Metagenomics data analysis
Alpha-diversity and beta-diversity analyses were per-
formed to estimate the diversity of microbial taxa in 
both CIS and the control group. The richness and abun-
dance of alpha-diversity for each group were calculated 
using the MicrobiotaProcess package in R, which were 
subject to statistical comparison and visualization using 
Wilcoxon Rank-Sum tests and ggplot2. The gut microbi-
ota composition for each group was calculated based on 
Bray–Curtis dissimilarities at the species level and visu-
alized using Principal Coordinates Analysis (PCoA). The 
statistically significant differential species were evaluated 
by the linear discriminant analysis of effect size (LEfSe) 
analysis using the Huttenhower lab Galaxy server (http:// 
hutte nhowe rsphh arvard. edu/ galaxy/). Functional anno-
tation of microbial taxa was performed using the KEGG 
Orthology (KO) database. KEGG pathways at Level 3 
were enriched, followed by statistical analysis using Sta-
tistical Analysis of Metagenomic Profiles (STAMP).

Metabolomics data analysis
Differences in feces, urine, and plasma metabolites 
between the CIS patients and the control group were 
evaluated by Wilcoxon Rank-Sum tests and fold change 
values. The differentially expressed metabolites were 
mapped onto metabolic pathways using the KEGG data-
base. The enriched pathways were counted only if more 
than three metabolites were mapped, and the corre-
sponding enrichment factors were calculated.

Construction of gut bacterium ecological network
The gut bacterium ecological network was constructed 
by calculating the Spearman’s rank correlation coeffi-
cient between microbiome species using Hmisc in R and 
visualized using Cytoscape (3.9.0) [26]. Only species that 
showed statistical differences were included in the net-
work. Additional file  1: Figure S1 depicts the flowchart 
with a series of procedures to include the microbiome 
species. In the network, each edge denotes a signifi-
cant correlation between a pair of species (P < 0.05 and 
|r|> 0.5). The size of a node is proportional to the number 
of significant interactions between species, and the color 
of a node indicates the phylum taxonomy.

Association analysis across clinical, metagenomics 
and metabolomics data
Extensive association analyses were performed to eval-
uate the correlation between blood clinical indices, 
metagenomics, and metabolomics data. For clinical 
indices, the following six indices were included, namely, 
triglycerides (TG), low-density lipoprotein (LDL), uric 
acid (UA), glucose (GLU), homocysteine (HCY), and 
high-density lipoprotein (HDL). For metagenomics data, 
725 statistically different species between CIS and con-
trol group were included. For metabolites, all identified 
metabolites were included. Spearman’s rank correlation 
coefficient was calculated by Hmisc package and visual-
ized by heatmap using pheatmap packeage in R. Linear 
regression model was applied to assess the individual 
relationship between each metabolite and Chao1 or 
Shannon diversity.

R package and web server
CorHeat, an open-source R package, was developed 
to embed the association analysis pipeline in the study 
(https:// github. com/ zllxm/ CorHe at). A user-friendly web 
server called CorHeat Lab was developed that is capable 
of conducting the association analysis online (https:// 
corhe at- v1. shiny apps. io/ CorHe at- v1/).

Fecal DNA extraction and metagenome sequencing
The fecal DNA was extracted from fecal samples by the 
beadbeating method using a GNOME DNA Isolation Kit 

http://huttenhowersphharvard.edu/galaxy/
http://huttenhowersphharvard.edu/galaxy/
https://github.com/zllxm/CorHeat
https://corheat-v1.shinyapps.io/CorHeat-v1/
https://corheat-v1.shinyapps.io/CorHeat-v1/
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(MP Biomedicals). Approximately 1 μg DNA per sample 
was sonicated to fragments with a size of 350 bp. All the 
DNA fragments were end-polished, A-tailed, and ligated 
with the full-length adaptor for Illumina sequencing with 
further PCR amplification. The PCR products were puri-
fied using AMPure XP system. Libraries were analyzed 
for size distribution by Agilent2100 Bioanalyzer and 
quantified using real-time PCR. The clustering of the 
index-coded samples was performed on a cBot Cluster 
Generation System. After cluster generation, the library 
preparations were sequenced on an Illumina HiSeq plat-
form and paired-end (PE) reads were generated.

Metagenomic data preprocessing
Raw sequence reads were trimmed using Trimmomatic 
[27] to remove adapters and low-quality reads. The 
contaminating human reads were removed using Bow-
tie2 [28]. High-quality reads were assembled into con-
tigs using MEGAHIT [29]. Prediction of Open Reading 
Frame (ORF) was performed on the assembled contigs 
using MetaGeneMark [30]. The redundancy in the ORF 
predicted results were eliminated by CD-HIT [31] to 
construct the non-redundant gene catalog. The gene 
abundance in each sample was determined by aligning 
the reads against the gene catalog using Bowtie2 and 
counting the number of reads mapped to each gene. To 
estimate the taxonomic profiles and functional annota-
tions of the gut microbial metagenome, the predicted 
genes were aligned against the NCBI-nr database [32] 
and protein sequences in the KEGG databases [33] using 
DIAMOND blastp [34].

GC‑TOF–MS Experiment
GC-TOF–MS analysis was performed using an Agilent 
7890 gas chromatography (GC) system coupled with a 
Pegasus HT time-of-flight mass spectrometer (TOF–
MS). The system utilized a DB-5MS capillary column 
coated with 5% diphenyl cross-linked with 95% dimeth-
ylpolysiloxane (30  m × 250  μm inner diameter, 0.25  μm 
film thickness; J&W Scientific, Folsom, CA, USA). A 
1μL aliquot of the analyte was injected in splitless mode. 
Helium was used as the carrier gas, the front inlet purge 
flow was 3 mL  min−1, and the gas flow rate through the 
column was 1  mL   min−1. The initial temperature was 
kept at 50 °C for 1 min, then raised to 310 °C at a rate of 
10  °C   min−1, then kept for 10 min at 310  °C. The injec-
tion, transfer line, and ion source temperatures were 280, 
280, and 250 °C, respectively. The energy was − 70 eV in 
electron impact mode. The mass spectrometry data were 
acquired in full-scan mode with the m/z range of 50–500 
at a rate of 20 spectra per second after a solvent delay of 
6.27 min.

GC–MS data preprocessing
Chroma TOF 4.3X software of LECO Corporation and 
LECO-Fiehn Rtx5 database were used for peak picking, 
data baselines filtering and calibration of the baseline, 
peak alignment, deconvolution analysis, peak identifica-
tion, and integration of the peak area. Peaks that were 
detected in less than 50% of the quality control sam-
ples were removed. Both mass spectrum match and 
retention index match were considered in metabolites 
identification.

Results
Fecal metabolome shows the most abundant metabolic 
features
The metabolic profiling of the three types of metabolic 
mixtures was performed on GC–MS platforms. After 
identification of metabolites, feces possess the most 
abundant features and identified metabolites, followed 
by urine and plasma. Also, the different mixtures show 
distinct and common features. Figure 1A shows the Venn 
diagram of the number of identified metabolites in three 
types of metabolic mixtures. There are 247, 204, and 162 
metabolites identified in feces, urine, and plasma. We 
calculated the quantitative changes of metabolites with 
statistical tests between CIS and the control group in 
different types of mixtures (Fig. 1B). The numbers of dif-
ferentially expressed metabolites (fold change > 2 or < 0.5, 
P < 0.05) are 30, 7, and 3 for feces, urine, and plasma, 
respectively. Therefore, fecal metabolites are more rep-
resentative in the study of CIS-associated metabolome 
than urine and plasma. For example, among all disrupted 
metabolites, phenylacetic acid is identified in feces and 
up regulated in CIS group, which is the precursor metab-
olite for the generation of phenylacetylglutamine that is 
associated with cardiovascular disease (CVD) and inci-
dent major adverse cardiovascular events (myocardial 
infarction, stroke, or death) [35].

Fecal metabolome reveals the strongest association 
with gut microbiota
The associations between the gut microbiome and the 
metabolome were evaluated using Spearman’s rank cor-
relation analysis and linear regression model. The Spear-
man’s rank correlation coefficient was calculated for each 
pair of relative abundance of bacteria species and metab-
olites. A total of 725 statistically different bacteria species 
were included in the association analysis. Respectively, 
247, 204, and 162 metabolites were considered in the 
correlation analysis for fecal, urine, and plasma metabo-
lome. 1073 statistically significant pairs (P < 0.05) and 
202 highly correlated pairs (|r|> 0.7, P < 0.05) were found 
between the gut microbiome and the fecal metabolome. 
191 statistically significant pairs (P < 0.05) and 130 highly 
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correlated pairs (|r|> 0.7, P < 0.05) were found between 
the gut microbiome and the urine metabolome. 81 sta-
tistically significant pairs (P < 0.05) and 16 highly corre-
lated pairs (|r|> 0.7, P < 0.05) were found between the gut 
microbiome and the plasma metabolome. The correla-
tion analysis results are clustered and visualized using 
heatmap in Fig.  2 and 3. By comparing the number of 
significant pairs and intensity of correlation, the fecal 
metabolome has the strongest correlation with the gut 
microbiome.

To explore the association between metabolites and 
the alpha-diversity of the gut microbiota, linear regres-
sion analysis was performed for metabolites and alpha-
diversity quantified by Chao1 and Shannon index. We 
estimated the proportion of variance in Chao1 and Shan-
non index explained by each metabolite. The results were 
shown in Fig. 4, Additional file 1: Figs. S11, and S13. It is 
found that 85 (feces), 7 (urine), and 5 (plasma) metabo-
lites showed significant associations with the microbial 
diversity, besides, 58, 0, 0 of which remained significant 
after FDR correction. Moreover, 58 out of 85 fecal metab-
olites (FDR < 5%) explained a substantial proportion of 
the observed variance (> 10%) in the microbial diversity, 
and 16.7% (SD: 5.5%) of the observed variance on aver-
age, ranging from 10.0% for taurine to 31.1% for penta-
decanoic acid. However, only 3 (urine) and 1 (plasma) 
metabolites explained up to 13.5% (p-cresol) and 10.6% 
(indole-3-acetic acid) of the observed variance on aver-
age in the microbial diversity. Consistent results were 
obtained for Shannon index, which is provided in sup-
porting information. Therefore, fecal metabolome 
showed the highest association with the microbiome, fol-
lowed by urine and plasma metabolome.

Pivotal interplays of disrupted gut microbiota and fecal 
metabolites in CIS
It is found that all microbial richness (Observe, Chao1, 
and Ace) and diversity (Shannon) were higher in the 
CIS group than the control group, though only micro-
bial richness indices were statistically different (Fig. 5A). 
Based on the Principal Coordinates Analysis (PCoA) 
for beta-diversity analysis, there is no statistical differ-
ence in terms of microbial composition between CIS and 
the control group (Fig.  5B). Linear discriminant analy-
sis effect size (LEfSe) analysis revealed that 33 different 
species and genera (26 species, 7 genera) were statisti-
cally different between the CIS and the control group 
(Fig.  6). We found that Oscillibacter, Clostridium, and 
SCFA producers such as Odoribacter, Akkermansia, and 
Ruminococcus were enriched in CIS group compared to 
the control group (Fig.  6). The KEGG pathway enrich-
ment analysis at level 3 revealed that 14 metabolic path-
ways showed statistical differences (P < 0.05) between CIS 
and the control group (Fig.  5C). The ecological interac-
tion analysis was performed to understand potential 
relationships among bacteria within the gut microbiota 
of CIS and the control group. As the ecological network 
shown in Fig.  5D, there was a stronger correlation in 
CIS compared with the control group. In the CIS group, 
bacteria Oscillibacter sp. CAG:241 from the phylum 
Firmicutes showed the strongest interactions with spe-
cies, and genus Clostridium showed the key and pillar 
role in bacteria interactions. Among the top 30 bacte-
ria species based on the degrees of nodes, several spe-
cies show stronger correlations in CIS than the control 
group, including Oscillibacter sp. CAG:241, Clostridium 
sp. MSTE9, Clostridium viride, Clostridium sp. CAG:226, 
and Clostridium sp. CAG:1024, which are associated with 

Fig. 1 Metabolic profiling analysis of metabolic mixtures in feces, urine and plasma. A Venn diagram of number of identified metabolites in 
feces, urine, and plasma. B Volcano plots of metabolite changes of CIS versus control in feces, urine, and plasma. Each dot represents a metabolite 
identified in the sample. Blue dot represents a metabolite that is downregulated in the CIS. Red dot represents a metabolite that is upregulated in 
the CIS
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Fig. 2 Heatmap of the Spearman’s rank correlation of species and fecal metabolites. 7056 pairs of correlations with 72 bacteria species and 98 fecal 
metabolites were plotted. Red squares indicate positive associations between these microbial species and clinical indexes. Blue squares indicate 
negative associations. The statistical significance was denoted inside the squares (*P < 0.05, **P < 0.01)
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cardiovascular disease (CVD) and incident major adverse 
cardiovascular events (myocardial infarction, stroke, or 
death). Additionally, these Clostridium species enriched 

in CIS closely interacted with each other and formed a 
connected group in CIS. Such changes in the gut micro-
biome ecological network suggested that interspecies 

Fig. 3 Heatmap of the Spearman’s rank correlation of species and urinary or plasma metabolites. Red squares indicate positive associations 
between these microbial species and clinical indexes. Blue squares indicate negative associations. The statistical significance was denoted inside 
the squares (*P < 0.05; **P < 0.01). A 2272 pairs of correlations with 71 bacteria species and 32 urinary metabolites were plotted. B 1197 pairs of 
correlations with 57 bacteria species and 21 plasma metabolites were plotted
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communication or interplay was significantly altered in 
CIS subjects.

We examined the association between the differen-
tial expressed metabolites and bacteria species in both 
CIS and control group. The Spearman’s rank correlation 
coefficient was calculated for each pair of relative abun-
dance of differential bacteria species and metabolites. 

Here, only the most significant different metabolites 
were considered, which included 30, 7, and 3 metabo-
lites for feces, urine, and plasma. Figure  7 shows the 
comparison of Spearman’s correlation between differ-
ential expressed metabolites and bacteria species. By 
comparing the number of significant pairs and intensity 
of correlation, the fecal metabolome had the strongest 

Fig. 4 The proportion of variance in Chao1 diversity explained by each fecal metabolite. Red bar denotes positive associations between metabolite 
and Chao1 diversity, while blue bar denotes negative associations

Fig. 5 Gut microbiota taxonomic and functional comparison between CIS and the controls. A depicts the indices of alpha-diversity. B depicts the 
Principal Coordinates Analysis (PCoA) of beta-diversity. Each point represents a single sample in CIS and the controls. The two principal components 
(PC1 and PC2) explained 24% and 17%. C shows the relative abundance of KEGG pathways of functional annotations in the gut microbiota. The 
barplot with 95% confidence intervals denote the significantly different KEGG pathways between CIS and controls. D Gut bacterium-bacterium 
ecological network in CIS versus the controls. Correlations between taxa were calculated through Spearman’s rank correlation analysis. Statistical 
significance was determined for all pairwise comparisons. Only statistically significant correlations (P < 0.05) with |r|> 0.5 were plotted. The size 
of node, corresponding to individual microbial species, is proportional to the number of significant inter-species correlations. The color of node 
indicates the phylum to which the corresponding microbial species belong to. The color intensity of connective lines is proportional to the 
correlation coefficient, where blue lines indicate inverse correlations and red lines indicate positive correlations

(See figure on next page.)
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Fig. 5 (See legend on previous page.)
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Fig. 6 Histograms of significantly diferent abundant taxa with LDA score (log10) > 2.0 and P < 0.05
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correlation with the gut microbiome, followed by the 
urine and plasma metabolome. Particularly, it is found 
that a fecal metabolite phenylacetic acid, the precursor 

substance of phenylacetyl glutamine (PAGln) that is 
related to CVD, was strongly associated with some 
bacteria species related to CIS, including Oscillibacter 

Fig. 7 Heatmap of the Spearman’s rank correlation of significantly differential species and metabolites. The statistical significance was denoted 
inside the squares (*P < 0.05, **P < 0.01)
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sp. CAG:241 (r = 0.51, P < 0.001), Clostridium viride 
(r = 0.58, P < 0.001), Clostridium sp.CAG: 1024 (r = 0.50, 
P < 0.001), Clostridium sp.CAG: 226 (r = 0.48, P < 0.001), 
and Clostridium sp.CAG: 715 (r = 0.40, P < 0.01). The 
linear regression analysis was also performed between 
individual bacteria species and all disrupted metabolites 
(Fig. 8 and Additional file 1: Figure S15). Fecal metabo-
lites had the strongest association with the bacteria spe-
cies. For instance, the fecal metabolome explained the 
36.7% variance of Oscillibacter, while urine and plasma 
metabolome had no significance in the association analy-
sis. Therefore, the study of CIS and the control group pre-
sent that the fecal metabolome not only has the strongest 
association with the gut microbiome but also contributes 
the most to understanding the disrupted gut microbiota 
and metabolisms.

Discussion
To investigate and evaluate the relationship between 
the gut microbiome and three sample types of meta-
bolic mixtures, including feces, urine, and plasma, we 
performed a systematic analysis about the association 
between metagenomics and metabolomics data of the 
ischemic stroke and the control subjects. The integra-
tive analysis of metagenomics and metabolomics reveals 
that fecal metabolome has the most abundant features 
with the strongest association with the gut microbiome 

in terms of bacteria diversity and abundance. The lin-
ear regression analyses showed that 58 fecal metabo-
lites explained a substantial proportion of the observed 
variance (> 10%, up to 31.1%) of the microbial diversity. 
Compared with plasma and urine metabolome, fecal 
metabolome has the most significant number of differen-
tially expressed metabolites between CIS and the control 
group. Furthermore, several disrupted fecal metabolites 
have strong correlations with the significantly differential 
bacteria species. These findings highlight the importance 
of fecal metabolites in metagenomic association analysis, 
which may serve as a reference for the selection of meta-
bolic mixture in biomedical research.

The integrative analysis of gut microbiome and 
metabolome was applied to the real-world scenario for 
biomarker discovery in ischemic stroke. Fecal metabo-
lome showed more significantly dysregulated metabo-
lites between the CIS and the control group than urine 
and plasma. Phenylacetic acid, a significantly differen-
tial metabolite in the fecal metabolome, deserves spe-
cial attention, because it is the precursor metabolite for 
generation of phenylacetylglutamine. The microbial gene 
porA facilitates dietary phenylalanine conversion into 
phenylacetic acid, with subsequent host generation of 
PAGln and phenylacetylglycine (PAGly) [35]. PAGln has 
been reported to be associated with cardiovascular dis-
ease (CVD) and incident major adverse cardiovascular 

Fig. 8 Association between bactriea data and the first principal coordinate (PCo1) of metabolomics data.  R2 and its significance were calculated 
using the ischemic stroke and control samples together. The black line and gray area show a linear model and its 95% confidence interval 
describing the overall trend. A Correlation between Oscillibacter and the first principal coordinate (PCo1) of fecal, urine, and plasma metabolomics 
data. B Correlation between Oscillibacter sp.ER4 and the first principal coordinate (PCo1) of fecal, urine, and plasma metabolomics data
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events (myocardial infarction, stroke, or death) [35–37]. 
PAGln significantly impacted platelet function, accel-
erates platelet clot formation, and enhanced thrombo-
sis potential in  vivo [35]. Moreover, the disrupted fecal 
metabolites are associated with some disrupted bacteria 
species, and these disrupted bacteria species have been 
reported to be associated with cardiovascular disease, 
including Oscillibacter at the genus level and Oscillibac-
ter sp. CAG:241, Clostridium sp.CAG:715, Clostridium 
sp. CAG:226, and Clostridium sp. CAG:1024 [20, 38, 39].

It should be noted that due to the limited sample size 
of the study, some unexpected biases may exist, such 
as the confidence level of metabolite identification 
and biomarkers for ischemic stroke. Therefore, further 
improvements, such as increasing the sample size and 
designing studies of different diseases, would facilitate a 
more informative association map between gut microbi-
ome and metabolomics. Overall, our study advances the 
knowledge that the fecal metabolites and gut microbiota 
are interconnected strongly and integrative analysis plays 
an important role in understanding the mechanisms of 
disease and biomarker discovery.

Conclusions
Alternations of gut microbiome and metabolome provide 
integrated information to elucidate the role of gut micro-
biota and metabolites in understanding the mechanisms 
of disease. Different metabolic samples have distinct 
metabolic profiles and show different degree of associa-
tions with gut microbiome. Our integrative analysis of 
gut microbiome and metabolomics of feces, urine, and 
plasma reveal that fecal metabolites provide the most 
abundant metabolic information and show the strong-
est association with gut microbiome, which promotes 
the study of interplay of gut microbiota and metabo-
lites to understand the disease. This study highlights the 
importance of fecal metabolites in metagenomic asso-
ciation analysis and provides a reference for appropri-
ate metabolic sample selection in biomedical research. 
Furthermore, the integrative microbiome-metabolome 
association study with application to cerebral ischemic 
stroke shows that fecal metabolome provides compre-
hensive and informative metabolic status to advance the 
biomarker discovery in certain diseases. Understanding 
the interplay between fecal metabolites and gut microbi-
ome will facilitate the multi-omics approach in biomedi-
cal and translational research, such as the development 
of personalized multimodal interventions for promoting 
health.
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