
Accurate Identification of Unknown and Known Metabolic Mixture
Components by Combining 3D NMR with Fourier Transform Ion
Cyclotron Resonance Tandem Mass Spectrometry
Cheng Wang,†,∥ Lidong He,⊥,∥ Da-Wei Li,‡,∥ Lei Bruschweiler-Li,‡ Alan G. Marshall,*,⊥,¶
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ABSTRACT: Metabolite identification in metabolomics sam-
ples is a key step that critically impacts downstream analysis.
We recently introduced the SUMMIT NMR/mass spectrometry
(MS) hybrid approach for the identification of the molecular
structure of unknown metabolites based on the combination
of NMR, MS, and combinatorial cheminformatics. Here, we
demonstrate the feasibility of the approach for an untargeted
analysis of both a model mixture and E. coli cell lysate based on
2D/3D NMR experiments in combination with Fourier
transform ion cyclotron resonance MS and MS/MS data.
For 19 of the 25 model metabolites, SUMMIT yielded com-
plete structures that matched those in the mixture independent
of database information. Of those, seven top-ranked structures
matched those in the mixture, and four of those were further validated by positive ion MS/MS. For five metabolites, not part
of the 19 metabolites, correct molecular structural motifs could be identified. For E. coli, SUMMIT MS/NMR identified 20
previously known metabolites with three or more 1H spins independent of database information. Moreover, for 15 unknown
metabolites, molecular structural fragments were determined consistent with their spin systems and chemical shifts. By providing
structural information for entire metabolites or molecular fragments, SUMMIT MS/NMR greatly assists the targeted or
untargeted analysis of complex mixtures of unknown compounds.

KEYWORDS: metabolomics, unknown metabolite identification, NMR-MS hybrid approach, 3D NMR HSQC-TOCSY,
COLMAR database

■ INTRODUCTION

The large number of different metabolites found in living
organisms offers important clues about the chemical under-
pinning of life, which is the subject of the field of metabolomics.
It has been estimated that the human body alone contains
over 100 000 different metabolites.1 Despite ongoing pro-
gress in the development of larger metabolomics databases,
the identification of unknown metabolites remains a major
bottleneck. Traditional approaches for natural product anal-
ysis, which are based on the complete physical separation
of the compound of interest, are very time-consuming and
hence impractical for routine and high-throughput applica-
tions. Alternatively, the two primary analytical techniques in
metabolomics, namely mass spectrometry (MS)2−4 and nuclear
magnetic resonance (NMR, see below), have been applied
separately.

Recently, new approaches have been proposed for the
analysis of complex mixture based on combining MS and NMR.
Finding ways to synergistically apply the two methods to the
same problem has been a challenge due to the high
complementarity of their information content. One strategy
focuses on subsets of spectroscopic signals that are highly
correlated or interdependent with respect to each other across a
large number of samples and hence may stem from the same
molecule.5−8 Such correlation analysis can be carried out either
for NMR data or direct infusion MS data alone or between the
two methods.9 Groups of signals that have been identified in
this way can then be used to deduce information about the
molecular structure. These statistical methods are applicable
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under two conditions, namely that a potentially large pool of
samples is available so that statistically meaningful results can
be obtained and that the compound of interest shows relatively
large modulations of its concentration relative to other
metabolites, so that the correlations between signals of the
compound are sufficiently large. For applications with smaller
sample pools, which can consist of as few as a single sample,
alternative approaches have been proposed. For uniformly
13C-labeled mixtures, 2D 13C−13C TOCSY or INADEQUATE
experiments permit the tracing of the backbone topology of indi-
vidual metabolites, thereby providing useful information toward
the elucidation of their structure.10,11 3D-(H)CCH-TOCSY
and COSY spectra of a 60% 13C-labeled rhododendron shrub
were used together with quantum-chemical calculations to identify
catalogued as well as several uncatalogued metabolites.12

We recently introduced approaches that synergistically use
NMR and MS for a single sample of a complex mixture at
13C natural abundance for the validation of known compounds
and the determination of unknowns. The first approach is the
NMR/MS Translator, which translates the metabolites
identified from 1D or 2D NMR by database query to accurate
masses that are then directly compared with MS of the
same sample, thereby providing a methodical validation of
metabolites by both NMR and MS.13,14 The second approach,
termed SUMMIT MS/NMR (for “structure of unknown
metabolomic mixture components by MS/NMR”),15 is more
complex and more ambitious than some of the other
approaches listed because it aims at the determination of the
structure of unknown metabolites without the use of NMR
or MS databases. On the basis of accurate masses from MS,
it generates a pool of possible molecular structures for which
NMR chemical shifts are computed and compared directly with
the 2D experimental chemical shift data of the mixture
spectrum. As a proof-of-principle, it was demonstrated how
SUMMIT could determine the correct structures for a finite,
well-defined subset of metabolites previously known to exist in
E. coli cell lysate.15

Here, we generalize SUMMIT for the untargeted identi-
fication of both known and unknown metabolites by combining
ultrahigh-resolution Fourier transform ion cyclotron resonance
mass spectrometry (FT-ICR MS)16 to assign unique elemental
compositions (CcHhNnOoPp...) with 3D NMR complemented
by 2D NMR experiments as the primary source of information
for spin-system identification and validation by tandem MS
(MS/MS). The NMR information is first queried against the
COLMAR NMR database,17−19 by use of the COLMARm20

database to identify a maximal number of known metabolites,
and thereby assign as many cross-peaks as possible. This step is
then followed by SUMMIT, combining MS with NMR data, for
the identification of unknowns from the remaining cross-peaks.
The approach is first demonstrated here for a model mixture
consisting of 25 metabolites. Compared to the original
SUMMIT experiments, for which mass measurement was based
on time-of-flight mass analysis with an average root−mean−
square (rms) mass error of ∼5 ppm (thus limited to metabolites
of up to ∼300 Da in mass), the present 9.4 T FT-ICR mass
measurements achieve 25-times higher mass accuracy (∼200 ppb
rms mass error) and thus allow a more reliable determination of
elemental composition for metabolites up to at least 1 kDa in
mass.21 By combining the results with MS/MS analysis, this
approach can provide additional disambiguation of the top hits
produced by SUMMIT.

■ METHODS

Identification of Unique Elemental Composition from
Ultrahigh-Resolution FT-ICR Mass Spectra

The SUMMIT approach begins from identification of
metabolite elemental composition. It has been shown that
mass measurement accuracy of ∼200 ppb enables identifica-
tion of unique elemental composition for organic molecules
up to ∼1 kDa in mass.22 Such mass measurement accuracy for
complex mixtures is routinely achieved by 9.4 T FT-ICR MS,
for example, resolution and elemental composition assignment
for more than 125 000 peaks in a single mass spectrum of a
volcanic asphalt sample.23 Although limited structural infor-
mation may be derived from elemental composition alone
(e.g., Kendrick mass,24 van Krevelen diagrams,25 double bond
equivalents versus carbon number for individual heteroatom
classes,26 etc.), the most definitive structural information relies
on NMR (see below).

Identification of Individual Spin Systems of a Mixture from
a 3D 13C−1H HSQC-TOCSY NMR Spectrum

The NMR portion of SUMMIT focuses on the identification of
spin systems of individual compounds based on multidimen-
sional 13C−1H and 1H−1H cross-peaks. In particular, the 2D
13C−1H HSQC experiment provides 13C−1H chemical shift
correlations between directly bonded 1H and 13C nuclei, and
2D 13C−1H HSQC-TOCSY provides 13C−1H and 1H−1H
bond connectivity information. If peak overlaps are absent or
rare, the combination of 2D HSQC and 2D HSQC-TOCSY
enables the unambiguous extraction of the spin systems of the
various mixture compounds. However, in practice the presence
of peak overlap will interfere with the accuracy and reliability of
spin system extraction. Because the 3D 13C−1H HSQC-
TOCSY spectrum is much less prone to peak overlap than
its 2D variant, we extract the spin systems directly from the
3D 13C−1H HSQC-TOCSY NMR spectrum. The 3D 13C−1H
HSQC-TOCSY experiment provides 13C(ω1),

1H(ω2), and
1H(ω3) correlations and resolves overlap of cross-peaks in the
2D 13C(ω1)−1H(ω2) plane by spreading the resonances along
the orthogonal 1H(ω3) dimension, which is the direct
1H detection dimension.27,28 Comparison of the 1H−1H
correlations along ω3 for each pair of 13C−1H cross-peaks
enables one to determine whether or not two 13C−1H cross-
peaks belong to the same molecule, thereby drastically reducing
the possibility of false spin system identification. In practice, the
main concern is the relatively low resolution along the two
indirect dimensions that provide the 13C and 1H correlation
information to keep the measurement time reasonably short.
This problem can be addressed in part by measuring an
additional high-resolution 2D 13C−1H HSQC spectrum to
complement the 13C and 1H correlation information from the
3D experiment, as done here, or the use of nonuniform
sampling methods.28,29

The 13C(ω1)−1H(ω2) plane of the 3D HSQC-TOCSY
spectrum depicts single bond 13C−1H correlations of all
molecules in the mixture. To distinguish 13C(ω1)−1H(ω2)
cross-peaks from different molecules and be able to cluster
these cross-peaks into individual spin systems, the analysis of
1H−1H TOCSY transfers along the ω3 dimension permits one
to correlate pairs of 13C(ω1)−1H(ω2) cross-peaks and assign
them to the same spin system. A prerequisite is that the cross-
peaks share the same cross-peaks along ω3. Specifically, such a
pair of 2D cross-peaks, (ω1′,ω2′) and (ω1″,ω2″), must then
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share 3D cross-peaks at positions (ω1,ω2,ω3) = (ω1′,ω2′,ω2′),
(ω1′,ω2′,ω2″), (ω1″,ω2″,ω2″), (ω1″,ω2″,ω2′). The goal is to find
all pairs of 2D cross-peaks that are connected in this manner.
These cross-peaks can be considered as edges of a mathematical
graph in which the nodes correspond to directly bonded
13C−1H spin pairs. Such a graph can then be analyzed in terms
of a “maximal clique” analysis, which we recently developed to
automatically extract all possible spin systems from TOCSY-
type spectra automatically.30

Figure 1 depicts a schematic diagram for the generation of
spin systems from the 3D 13C−1H HSQC-TOCSY NMR

spectrum. It should be noted that for spin systems with only
one 13C−1H pair, the method does not work because the spin
system is fully characterized by a single cross-peak in the 3D
spectrum. Therefore, peak assignments of one-spin systems
need to be performed manually. Similarly, because two-spin
systems contain no redundant information, they are more
prone to false positives and were considered only for the model
mixture but not for E. coli cell extract.
After spin systems of individual compounds are extracted,

they are refined to minimize the occurrence of false positives.
Spin system refinement includes three consecutive steps. First,
extracted spin systems are validated by visually checking
2D 13C−1H HSQC, 2D 1H−1H TOCSY, and 2D 13C−1H
HSQC-TOCSY NMR spectra. If the extracted spin system was
incomplete, expected peaks that are unambiguously observed
by visual inspection, but that were missed by the automated
procedure, are manually added until the spin system is
complete. Second, 1H peak doublets and nearly degenerate
1H resonances are combined into a single chemical shift. For
example, CH2 groups can have two separate proton chemical
shifts belonging to the same 13C, but sometimes it is difficult
to determine whether two separate peaks stem from a single
CH2 group or from two separate CH groups. Therefore, those
spin systems that contain two cross-peaks with the same
13C frequency in the HSQC are merged into a single cross-peak

(with a chemical shift taken as the mean of the two proton
resonances) for the generation of an alternative spin system
candidate, which is added to the list of spin systems. Third,
potential extra spins are manually identified and added after
comparison of 1D 1H traces along ω3. For example, for an
automatically generated three-spin system, if an additional
resonance shows unambiguous connectivities to all three spins,
but has not yet been included in the clique, then this spin is
manually added, resulting in a new four-spin system. An example
for the refinement of spin systems is provided in Figure S1.
Structure Manifold Generation and 2D HSQC NMR Spectra
Prediction

Each accurate mass derived from an experimental FT-ICR mass
spectrum was compared to the METLIN database to identify
the closest matching molecular formula (note that METLIN
was used only to search for molecular formulas that are
consistent with the FT-ICR-based mass information, but not
for molecular structures). Because each molecular formula
could correspond to any of several isomers, we then searched
the ChemSpider database31,32 for all structures corresponding
to a given molecular formula.
For all molecular structures, 2D 13C−1H HSQC spectra are

predicted by use of the empirical chemical shift predictor by
Modgraph implemented in MestReNova 10.0.1 (Mestrelab
Research). HSQC prediction for each molecule takes about
3−10 s with a desktop computer. The 13C chemical shift
prediction utilizes a HOSE code algorithm, whereas the 1H
chemical shift prediction is based on functional groups which
were individually parametrized.33 Because NMR chemical shift
prediction plays a critical role in SUMMIT for identifying the
correct compound from a large compound pool, we examined
the prediction accuracy for amino acids, organic acids, and
carbohydrates contained in a 25-compound model mixture.
We compared the predicted NMR chemical shifts with the
NMR chemical shifts contained in the COLMAR data-
base.17−19 For a total of 179 13C−1H moieties, the average
prediction errors for carbon and proton chemical shifts are
2.903 and 0.292 ppm. The comparison between predicted and
experimental chemical shifts is shown in Figure S2.
Weighted Matching between Experimental and Predicted
NMR Spectra

After 2D 13C−1H HSQC NMR spectra were predicted for all
chemical compound candidates, the weighted matching
algorithm by Munkres was applied to match the 2D 13C−1H
HSQC spectra extracted for individual mixture compounds
with the predicted 2D 13C−1H HSQC spectra.34 The use of a
weighted matching algorithm is motivated by the goal to find
the closest matching peak pairs for each experimental spin
system to each predicted spin system, provided that the total
number of spins is the same. The matching results are ranked
according to the chemical shift root−mean−square deviation
(RMSD) (eq 1) between the experimental and predicted
chemical shifts:

∑= − + − ×
=

⎪

⎪

⎪

⎪

⎧
⎨
⎩
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⎫
⎬
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C C H H NRMSD ( ) (( ) 10) /2
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N

i i i i
1

,exp ,pred
2

,exp ,pred
2
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(1)

in which Xexp are the experimental chemical shifts, Xpred are the
predicted chemical shifts, and N is the number of peaks in the
spin system. A scaling factor of 10 is used to normalize the
effects of 13C and 1H chemical shifts on the overall RMSD by
correcting for the different chemical shift ranges of these nuclei.

Figure 1. Extraction of spin systems of individual mixture compounds
from 3D 13C−1H HSQC-TOCSY. Panel A shows the relationship
between cross-peaks from the 2D 13C−1H HSQC spectrum (left) and
the 3D 13C−1H HSQC-TOCSY spectrum (right). Panel B illustrates
how 1D cross sections along ω3 (1H) of the 3D HSQC-TOCSY
spectrum of (a) yield spin system information, which is extracted by
use of a maximal clique approach. Traces 1, 2, 3 show high similarity
because they belong to the same spin system consisting of three
protons, whereas trace 4 belongs to a separate spin system with a
single proton.

Journal of Proteome Research Article

DOI: 10.1021/acs.jproteome.7b00457
J. Proteome Res. 2017, 16, 3774−3786

3776

http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.7b00457/suppl_file/pr7b00457_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.7b00457/suppl_file/pr7b00457_si_001.pdf
http://dx.doi.org/10.1021/acs.jproteome.7b00457


Table 1 shows the matching result for valine in the 25-compound
model mixture.

Molecular Structure Motif Identification of Compounds

After matching and rank-ordering, predicted NMR spectra for a
potentially large number of candidate compounds derived from
FT-ICR MS with an experimentally extracted spin system

generally yielded a large number of hits with a reasonably low
chemical shift RMSD cutoff (<5 ppm). Although candidate
compounds with lower RMSDs generally are more likely to be
the true compound, it cannot be excluded that the true com-
pound has a lower rank due to the limited NMR prediction
accuracy or molecular structure degeneracy. Therefore, to simplify
and speed up the identification of the true compound among the
hundreds or even thousands of hits, we propose the following
approach referred to as “molecular structural motif identi-
fication of chemical compounds” or MSMIC. Because the
experimentally extracted spin system corresponds to a
structural motif consisting only of carbons and protons of the
true compound, the goal of MSMIC is to find all possible
molecular structural motifs that correspond to the exper-
imentally extracted spin system among all of the compound
candidates. The common molecular structural motif among
different compounds will generate similar chemical shifts
because additional atoms and functional groups typically
have only little influence on the NMR chemical shift predic-
tion of spins that are part of the molecular structure motif.

Table 1. Example of Chemical Shift (c.s.) Matching Results
for Valine

functional
group

predicted 1H
c.s. (ppm)a

predicted 13C
c.s. (ppm)a

expt. 1H c.s.
(ppm)

expt. 13C c.s.
(ppm)

−CγH3 0.910 19.32 1.034 20.56
−CγH3 0.960 19.32 0.983 19.23
−CβH2 2.220 31.07 2.267 31.69
−CαH 3.440 61.90 3.597 63.00
RMSD (ppm) 0.93
aEmpirical chemical shift prediction was obtained by use of the NMR
predictor by Modgraph embedded in the MestReNova software.

Figure 2. Putatively annotated valine spin system in a 25-metabolite model mixture extracted from 3D HSQC-TOCSY spectrum and confirmed by
2D TOCSY and 2D HSQC-TOCSY. Panel A: four single bond C−H cross-peaks (blue) of valine in the 2D HSQC (left) and 2D HSQC-TOCSY
(right) spectra. The expected relay HSQC-TOCSY cross-peaks of the spin system are highlighted in red. Panel B: four different ω1−ω2 planes of the
3D HSQC-TOCSY spectrum belonging to valine. Blue peaks obey ω2 = ω3, and the red peaks are the other expected 3D cross-peaks of the valine
spin system.

Journal of Proteome Research Article

DOI: 10.1021/acs.jproteome.7b00457
J. Proteome Res. 2017, 16, 3774−3786

3777

http://dx.doi.org/10.1021/acs.jproteome.7b00457


For instance, L-glutamine and glutathione share the common
molecular structural motif (HOOCCH(NH2)CH2CH2CO-
NH−) and hence have similar chemical shifts for this motif
(Figure S3). All hits (compound candidates) are sorted into
groups according to their MSMICs by use of the nearest neigh-
bor heavy atom for discrimination between different MSMICs.
In a next step, molecular representatives of all high scoring
MSMICs are selected for NMR experiments or used for
quantum chemical calculations of their chemical shifts for the
more accurate ranking of MSMICs. The best matching
molecules are then either purchased or synthesized for NMR
spiking experiments. This approach was implemented by use of
in-house python scripts. Examples of MSMICs will be discussed
below. In chemometrics, the maximum common substructure
(MCS) approach is very efficient in identifying local structural
similarities among large structural manifolds (>750 000).35,36

Unfortunately, MCS is not able to identify the common motif
that corresponds to a given spin system because it is not based
on substructures connected by scalar J-couplings.

■ RESULTS AND DISCUSSION

Demonstration of SUMMIT MS/NMR to Identify Metabolites

First, we illustrate SUMMIT MS/NMR for the identification of
metabolites based on the example of a spin system extracted
from the 3D HSQC-TOCSY NMR spectrum of the 25-compound

model mixture. The spin system with chemical shifts (δH, δC) of
(3.597, 63.000), (2.267, 31.690), (1.034, 20.560), and (0.983,
19.230) ppm was used to match the predicted 2D HSQC NMR
spectra of 57 881 compounds derived from elemental
compositions corresponding to all above-threshold FT-ICR
mass spectral peaks (see below). The spin−spin connectivity
information is manifested in both 2D HSQC-TOCSY and 3D
HSQC-TOCSY, which confirms that the four peaks indeed
belong to the same spin system (Figure 2). The experimental
chemical shifts were matched against the predicted chemical
shifts of the 57 881 compounds by use of the weighted
matching algorithm. On the basis of an RMSD cutoff of
5.0 ppm, 122 RMSD rank-ordered hits were returned. The top hit
was valine with an RMSD of 0.93 ppm. Because valine was
known to be one of the 25 compounds in the model mixture
(which was independently confirmed by querying the chemical
shifts of this spin system against the COLMAR 1H(13C)-
TOCCATA database,18 yielding a low RMSD of 0.08 ppm for
the database entry of valine), SUMMIT MS/NMR was success-
ful in identifying (and verifying) this mixture component
without depending on either a spectral NMR or MS database.
How should one proceed if the true compound does not

exist in an NMR metabolomics database for validation, and how
can one verify the true compound among dozens or hundreds
of candidates returned by SUMMIT MS/NMR? Here, the

Figure 3. Molecular structural motifs identified by SUMMIT from 122 different compound candidates that all match the spin system of valine. The
hits were sorted into different groups according to their common molecular motif that represents the NMR-derived spin system.
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MSMIC approach described above comes to fruition. By first
identifying the molecular structural motif of the true

compound, it helps elucidate the complete structure of the
true compound in a second step. Again, the spin system that

Figure 4. Identification of best matching metabolites in a 25-compound model mixture by SUMMIT MS/NMR. (A) Experimental 2D HSQC NMR
spectra of metabolites extracted from 3D HSQC-TOCSY. Each spectrum is a collection of enlarged spectral regions (separated by dotted lines) that contain
the corresponding cross-peaks. (B) Predicted 2D HSQC NMR spectra from FT-ICR MS-derived molecular structures (57 881 in total). Each experimental
HSQC spectrum was compared with all 57 881 predicted HSQC spectra by maximum weighted bipartite matching. All returned hits were ranked according
to their chemical shift RMSD. (C) Top hit compounds that belong to true compounds in the model mixture. Molecular substructures highlighted in
magenta correspond to the molecular structural motifs (MSMIC) of the matched spin system. The spectra of panel B were sorted so that each experimental
spectrum of panel A is adjacent to its top hit in panel B. To each edge of the graph connecting panels A and B belongs a chemical shift RMSD.
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was eventually identified as valine is used as an example to
demonstrate the strategy. For an unknown spin system with
hundreds of compound candidates, the hits with lower RMSDs
are more likely to correspond to the true compound. To verify
the identity of the true compound beyond the limited NMR
database information, quantum-chemical calculations followed
by a NMR spiking experiment was adopted as the “gold
standard” for compound verification.37 In fact, before
proceeding to verify the true compound by labor-intensive
NMR spiking experiments for the 122 hits, the molecular
structural motifs that reflect the possible substructures of the
unknown spin systems are extracted, which both simplifies and
speeds up the verification process. Examples of molecular
structural motifs identified among the 122 hits are shown in
Figure 3. As compounds with a common motif are expected to
have similar chemical shifts, the next step is to select one or two
compounds with low RMSD by quantum-chemical calculation
in each cluster and perform NMR spiking experiments. Hence,
the 122 initial hits were further reduced to fewer than 10
compound candidates for the verification of the molecular
structural motif of the true compound. After confirmation of
the MSMIC that belongs to an unknown spin system, further
validation steps are performed to verify the entire compound as
explained below.

Application to a 25-Compound Model Mixture

NMR and FT-ICR MS Data-Derived Information. On the
basis of the maximal clique approach to automatically extract
spin systems (see Methods section), 49 spin systems were
extracted from the 3D 13C−1H HSQC-TOCSY NMR spectrum
of the 25-compound model mixture. All extracted spin systems
included two or more spins (one-spin systems were not
included, see Methods section). Twenty-six spin systems
were identified by SUMMIT MS/NMR and verified based on
COLMAR 1H(13C)-TOCCATA database query; two unknown
spin systems could not be annotated and were classified as false
positives because each resonance in these spin systems belongs
to other spin systems as determined by visual inspection of the
2D TOCSY and HSQC-TOCSY spectra. Twenty-one spin
systems were identified as partially or fully overlapping spin
systems after spin system refinement as described in the
Methods section. Eighty neutral molecular formulas (rms mass
error 0.07 ppm) were obtained from the 100 highest magnitude
FT-ICR mass spectral peaks by identifying elemental
compositions matched to the METLIN database (see above)
with <0.15 ppm mass error threshold (Figure S4).32 (Peaks not
originating from the 25 metabolites likely belong to impurities
in the purchased compounds.) For each mass peak, [M + H]+,
[M + Na]+, [M+K]+, [M+ACN+H]+, [M+ACN+Na]+, and [M
+2Na−H]+ (in which M is the metabolite or its derivative) were
considered as possible adducts. There were 57 881 molecular
structures corresponding to the 80 molecular formulas according
to the ChemSpider database (presently containing over 58
million molecular structures).31 By comparison, if the mass error
threshold was set to 1.0 ppm, 92 distinct molecular formulas
were obtained with rms mass error 0.17 ppm, corresponding to
68 173 structures. In mixture analysis by MS, it is possible that
intra- and interdimers and multimers may be generated. For
example, ESI MS can yield both [M + H]+ and [2M+2H]2+ ions,
which have the same monoisotopic mass-to-charge ratio, that is,
[12Cc

1H(h+1)
14Nn

16Oo
31Pp

32Ss]
+ and [12C2c

1H(2h+2)
14N2n

16O2o-
31P2p

32S2s]
2+. However, the dimer is readily recognized by an

m/z separation of 0.5 between 12C2c
2+ and its [12C(2c‑1)

13C1]
2+

isotope peak. We did not observe any multimers of the
reported metabolites.

Identification of Metabolites in the 25-Compound
Model Mixture. After application of the weighted matching
algorithm to match the 26 spin systems with the predicted
2D NMR HSQC spectra, the hits for each spin system were
sorted according to the best matching chemical shift RMSD.
Figure 4 shows the weighted matching scheme for the
identification of metabolites by SUMMIT MS/NMR. Seven
mixture compounds were returned as the top hits, namely
valine, lysine, glutamine, isoleucine, arginine, and ornithine, and
four compounds ranked between 2 and rank 10 [including
fructose (ranked 4) of a total of 6 carbohydrates]. An additional
six compounds ranked between the top 11−50 hits including
adenosine (vide inf ra). Histidine and sucrose ranked 52th and
61th. Shikimic acid was not returned in the top 100 hits.
However, a compound that has the same MCMIC as shikimic
acid is the top hit. Four of the six carbohydrates were not in the
top 100 hits due to high structural degeneracy and limited
NMR chemical shift prediction accuracy. Finally, although the
molecular weight of alanine (89.09320 Da) falls below the low-
m/z limit of the FT-ICR MS, it can easily be identified by low
resolution MS (e.g., quadrupole ion trap). Table 2 shows the
matching results for the 25-compound model mixture.

Table 3 shows the effect of (+) ESI FT-ICR mass spectral
peak magnitude threshold on the number of possible
ChemSpider structures and hit rank for the 25 metabolites
mixture. For example, the number of possible structures drops
from 57 881 to 16 030 or 9162 for a MS peak magnitude
threshold increase from the top 100 highest-magnitude peaks to
just the top 30 or 20 highest-magnitude peaks.
Although adenosine in the 25-compound mixture was low-

ranked (rank 44 among 92 hits), it shares the ribose ring as the
same common molecular structural motif with all other top 43
hits. Shikimic acid, galactose, glucose, lactose, and ribose were
not identified (because chemical shift RMSDs > 5.0 ppm), but
their molecular structural motifs were correctly identified by

Table 2. SUMMIT Results for 25-Compound Model Mixture
(With Mass Error Cutoff of 0.15 ppm)

compound rank

total hits
(c.s. RMSD
< 5.0 ppm)

percentile =
rank/total

number of hits

c.s.
RMSD
(ppm)

mass
error
(ppm)

valine 1 122 0.8% 0.93 −0.04
lysine 1 39 2.6% 1.54 0.04
glutamine 1 140 0.7% 1.36 0.07
isoleucine 1 16 6.3% 1.77 0
arginine 1 81 1.2% 2.02 0.10
ornithine 1 62 1.6% 2.05 0.05
leucine 1 13 7.7% 2.06 0
threonine 3 79 3.8% 1.71 −0.08
fructose 4 116 3.4% 1.32 0.05
carnitine 4 22 18.2% 3.32 0.12
cysteine 10 142 7.0% 2.17 −0.05
inosine 13 99 13.1% 2.27 −0.02
citrulline 23 65 35.4% 2.76 0.12
methionine 29 133 21.8% 2.53 0.03
serine 30 514 5.8% 2.2 0.07
proline 30 91 33.0% 2.55 0
adenosine 44 92 47.8% 2.74 0
histidine 52 181 28.7% 2.56 0.11
sucrose 61 117 52.1% 2.06 0.04
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SUMMIT MS/NMR. These results show the ability of this
approach to correctly identify structural motifs belonging to
spin systems identified by NMR. The remaining ambiguity
among molecules with the correct structural motif is due to
limitations of the empirical chemical shift predictor, which can
be alleviated in part by applying more accurate, but also more
expensive, quantum-chemistry based chemical shift calculations
to the top hits.38

To reduce the number of false-positive compounds returned
by weighted matching, we optimized the mass error threshold
for molecular formulas determination to 0.15 ppm, which
significantly reduced the number of false compounds and
improved the rankings of the true compounds. As an example,
mixture compound leucine ranked seventh of a total of 29 hits
if a 1.0 ppm mass error threshold was used, but it ranked as the
top hit of 13 returned hits after lowering the mass error
threshold to 0.15 ppm. Note that the average mass error for the
true 25 compounds is 30 ppb and the maximum mass error is
less than 120 ppb, which demonstrates the high mass accuracy
that can be achieved from an ultrahigh-resolution FT-ICR mass
spectrum for a metabolic mixture. Therefore, for an unknown
metabolite in a metabolomics mixture, focusing on the low ppm
mass accuracy molecular formulas will lead to fewer molecular
formulas and thereby facilitate the true compound identi-
fication. It should be noted that the low ppm mass accuracy
cutoff varies from sample to sample, but it can be determined
for each sample by the identification of known abundant
metabolites in the mixture.
Validation of Putative Metabolite Structure by FT-ICR

MS/MS. MS/MS can serve to validate the top-ranked
structures. As a demonstration, FT-ICR infrared multiphoton
dissociation (IRMPD) was performed for the isolated precursor
ions corresponding to SUMMIT MS/NMR top-ranked
glutamine, lysine, arginine, and ornithine (Figure 5, Figures S5
and S6). Glutamine and lysine MS/MS yielded mass differences

(between the precursor ion and product ion) of 17.02656 and
17.02658 Da (i.e., 0.01 mDa and 0.03 mDa deviation from
the calculated mass 17.02655 Da) corresponding to loss of
ammonia. Arginine and ornithine MS/MS yielded loss of
ammonia (0.06 mDa and 0.05 mDa deviation from the
calculated mass of 17.02655 Da) and loss of water (0.06 mDa
and 0.06 mDa deviation from the calculated mass of 18.01056 Da).
Collision-induced dissociation (CID) in a linear quadrupole ion
trap yielded loss of ammonia, water, and carbon monoxide from
valine precursor ion (Figure S7). Therefore, the product ion
mass spectrum further supports the highest ranked SUMMIT-
based structures. Although the information content of MS/MS
fragment analysis varies from metabolite to metabolite, MS/MS
is expected to be most helpful for SUMMIT MS/MS/NMR
for the identification of larger molecules, such as secondary
metabolites.
Application to E. coli Cell Lysate

NMR and FT-ICR MS Data-Derived Information. Three-
hundred ninety-seven potential spin systems were extracted
from the 3D HSQC-TOCSY NMR spectrum of the E. coli cell
lysate by applying the maximal clique approach in full analogy
to the model mixture. All extracted spin systems included
three or more spins. Besides one-spin systems, two-spin sys-
tems were also excluded to avoid the generation of a potentially
large number of false positives. We obtained a total of 1095
molecular formulas by searching the FT-ICR broadband
accurate masses against the METLIN database (see above),
leading to the generation of 914 947 candidate molecular
structures by screening the ChemSpider database.

Identification of Known Metabolites in E. coli. In the
25-compound model mixture, all of the compounds are known
and they are contained in the NMR database, thereby enabling
testing of the SUMMIT MS/NMR method. Here, we first

Table 3. Effect of Cutoff Threshold of Mass Peak Amplitudes
on the Rank of SUMMIT Results for 25-Compound Model
Mixture (0.15 ppm Mass Error Cutoff)

index compound

rank: top
30 mass
peaks

rank: top
20 mass
peaks

rank: all
mass
peaks

c.s.
RMSD
(ppm)

1 valine 1 1 1 0.83
2 lysine 1 1 1 1.44
3 glutamine 1 1 1 1.35
4 isoleucine 1 1 1 1.86
5 arginine 1 1 1 1.95
6 ornithine 1 1 1 1.92
7 leucine 1 1 1 1.84
8 threonine 2 N/A 3 1.55
9 fructose 4 4 4 1.36
10 carnitine 4 3 4 3.14
11 methionine 6 3 29 2.18
12 proline 7 5 30 2.54
13 cysteine 7 N/A 10 1.93
14 citrulline 11 10 23 2.40
15 inosine 13 13 13 2.26
16 serine 17 11 30 2.07
17 histidine 18 9 52 2.58
18 adenosine 39 38 44 2.63
19 sucrose 61 61 61 1.77
structure
manifolds

16 030 9162 57 881

Figure 5. FT-ICR MS/MS of glutamine and lysine in 25 metabolite
mixture. Glutamine and lysine MS/MS yields mass differences
(between the precursor ion and product ion) of 17.02656 and
17.02658 Da (i.e., 0.01 mDa and 0.03 mDa deviation from the
calculated mass 17.02655 Da) corresponding to loss of ammonia.
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apply SUMMIT MS/NMR to identify known metabolites in
E. coli to test the power and limitations of the method by
comparing the results with those obtained by querying the
spectra directly against the COLMAR web server. The recently
developed COLMARm web server module provides simultaneous
analysis of 2D HSQC, 2D TOCSY, and 2D HSQC-TOCSY
NMR spectra and is used to identify metabolites. Metabolites
were first identified by querying the 2D HSQC against the
COLMAR database and subsequently verified by 2D TOCSY
and 2D HSQC-TOCSY by use of COLMARm. Forty-one
metabolites could be identified with high confidence by
COLMARm (2D HSQC cross-peak matching ratio >0.8 and
more than 50% spin−spin connectivities showing up in the
2D TOCSY and 2D HSQC-TOCSY spectra), which are listed
in the Supporting Information Table S1. The 41 metabolites
were treated as “putatively annotated metabolites” to be verified
by SUMMIT MS/NMR. When implementing SUMMIT
MS/NMR to verify the metabolites identified by COLMAR,
we compared the identified metabolites with the matching
results returned for each extracted spin system. Verification
results are reported in Supporting Information Table S2 for
metabolites that fulfill the following conditions: they are ranked
among the top 200 hits if the total number of hits with a
chemical shift RMSD < 5.0 ppm was 400 or less or they are
ranked in the top 50% percentile if the total number of hits with
RMSD < 5.0 ppm exceeded 400. These criteria ensure that the
most likely candidates are retained without making the pool
unrealistically large. On the basis of cross-platform analytical
methods to verify compounds, the identification and verifi-
cation results by COLMAR and SUMMIT MS/NMR achieved
level 2 confidence according to the Metabolomics Standards
Initiative.37

The following 13 known metabolites were successfully
verified by SUMMIT MS/NMR: L-glutamine, L-valine, maltose,
cellobiose, N-acetyl-putrescine, L-glutamic-acid, D-glucose,
spermidine, L-phenylalanine, L-tyrosine, N-α-acetyl-L-lysine,
L-glutathione-reduced, and L-methionine. Adenosine, inosine,
L-proline, leucine, pyridoxamine-5-phosphate-1, and guanosine
could not be verified because not all of their cross-peaks
showed up due to the relatively low abundance of these
metabolites and the limited sensitivity of HSQC-TOCSY.
However, by manually checking 2D HSQC-TOCSY and 3D
HSQC-TOCSY, partial spin systems of these metabolites
(covering 50% or more of the expected cross-peaks) could be
identified. When implementing SUMMIT MS/NMR, we set
the matching ratio cutoff to 1 to increase the identification
accuracy when matching with FT-ICR MS-derived NMR
spectra. For instance, if a compound contains a five-spin
system, but only a four-spin subsystem could be reconstructed
from 3D HSQC-TOCSY (e.g., because a resonance is very
weak), the true (5-spin system) compound would not be
returned as a hit by matching the experimental four-spin system
with the FT-ICR MS-derived NMR spectra.
Therefore, SUMMIT MS/NMR will verify only the

metabolites that are detectable by both analytical methods,
providing high validation confidence across platforms.
In addition, off-line LC fractionation can be applied prior to
MS/NMR analysis to decrease the complexity of the metab-
olites mixture and increase the chance to identify more
common metabolites by MS and NMR. Those metabolites that
are identified by only one of the two analytical methods need to
be further validated by other analytical methods, for example,
HPLC-MS. In any case, HPLC retention time (especially when

calibrated by spiking with the putative metabolite) can help
further validate any metabolite assignments based on NMR,
MS, or a combination of the two. Finally, metabolites that are
not detected by positive ESI can often be detected by negative
ESI. For example, the MS1 accurate masses for acetyl-L-glutamine,
DL-α-glycerol-phosphoric acid, D-glucuronic acid, methyl-uridine,
deoxythymidine monophosphate, uridine monophosphate, and
cystathionine were detected by use of negative ESI (rms mass
error 0.18 ppm), and those identities were confirmed by NMR.

Identification of Unknown Metabolites in E. coli by
SUMMIT MS/NMR. The primary aim of SUMMIT MS/NMR
is to identify unknown compounds that are not catalogued in
current NMR and MS metabolomics databases. Unknown spin
systems show self-consistent spin−spin connectivities in the 3D
HSQC-TOCSY spectrum, but do not match any compound in
the NMR database. Here, SUMMIT MS/NMR identified up to
15 unknown spin systems (compounds) in E. coli cell lysate.
For instance, the spin system with chemical shifts (δH, δC)
identified as (1.167,19.542), (3.618,59.207), (3.632,75.944),
(3.767,73.296), (4.032,70.725), and (5.573,98.048) ppm shows
high confidence as a true positive spin system (Figure 6), but it
could not be assigned to any known compound after querying
against the COLMAR database. However, after matching
against 914 947 predicted NMR spectra, 12 hits (RMSD < 5.0
ppm) were returned, and four molecular structural motifs were
identified (Figure S8). As a proof of principle for the
identification of true compounds, we applied quantum-chemical
calculations to two selected compounds among the 12 hits,
namely L-fucosamine and 6-desoxy-D-glucosamine. 6-Desoxy-D-
glucosamine was the top hit among the 12 hits. L-Fucosamine
has been found as a constituent of mucopolysaccharides of
certain enteric bacteria (e.g., Citrobacter f iemdii), but the exis-
tence of L-fucosamine in E. coli was previously unknown.39

Quantum-chemical calculations of NMR chemical shifts for
these two compounds return a lower RMSD for L-fucosamine,
and hence, L-fucosamine is more likely to be the true com-
pound than 6-desoxy-D-glucosamine, consistent with the
literature (Table S3). Although the true identity of this spin
system remains uncertain, SUMMIT MS/NMR provides a
small list of likely candidates, which represents actionable
information for the identification of the true compound.
Pyroglutamic acid, which at the outset of this study was not

part of the COLMAR 1H(13C)-TOCCATA database, repre-
sents another instructive example of the SUMMIT approach.
SUMMIT MS/NMR successfully extracted the spin system and
returned pyroglutamic acid as the 116th hit (Figure S9).
Independently and at about the same time, the COLMAR
1H(13C)-TOCCATA database increased by 284 compounds,17

including pyroglutamic acid, thereby enabling the identification
of pyroglutamic acid as a known metabolite, confirming the
SUMMIT results. For the E. coli cell lysate, SUMMIT returned
15 unknown spin systems along with their candidate compounds.
To maximize the confidence of the unknown spin systems,
we included all of the pairwise-connected spins that appear
along the 1D ω3 (

1H) trace, and none of the peaks in the spin
system matched the NMR database. The unknown spin
systems and compound candidates (top hit) are listed in the
Supporting Information Table S4.
Finally, we note that some unknown spin systems have

multiple candidate compounds, whereas others do not match
any candidate compounds based on our metrics. Extending the
mass range of FT-ICR MS will be helpful to incorporate all
possible compounds and find the compound candidates for these

Journal of Proteome Research Article

DOI: 10.1021/acs.jproteome.7b00457
J. Proteome Res. 2017, 16, 3774−3786

3782

http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.7b00457/suppl_file/pr7b00457_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.7b00457/suppl_file/pr7b00457_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.7b00457/suppl_file/pr7b00457_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.7b00457/suppl_file/pr7b00457_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.7b00457/suppl_file/pr7b00457_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.7b00457/suppl_file/pr7b00457_si_001.pdf
http://dx.doi.org/10.1021/acs.jproteome.7b00457


unknown spin systems. Nevertheless, SUMMIT MS/NMR
provides powerful fingerprints, based on spin system infor-
mation, molecular formulas, and compound candidates in
complex biological mixtures, thereby greatly assisting the
analysis of complex metabolomics mixtures whose composi-
tions are only partially known, without being limited to
spectroscopic databases. SUMMIT is expected to find fruitful
applications to support key objectives of contemporary
metabolomics research, including the discovery of new bio-
chemical pathways and biomarkers.

■ EXPERIMENTAL SECTION

Sample Preparation

A 25-compound metabolite mixture contained adenosine,
alanine, arginine, carnitine, citrulline, cysteine, fructose, galactose,
glucose, glutamine, histidine, inosine, isoleucine, lactose, leucine,
lysine, methionine, ornithine, proline, ribose, serine, shikimate,
sucrose, threonine, and valine. For the NMR experiments,
the final concentration of each metabolite was 1 mM in 600 μL
of D2O with 20 mM phosphate buffer and 0.1 mM DSS

(4,4-dimethyl-4-silapentane-1-sulfonic acid) for chemical shift
referencing. The same 25 compounds were used for the MS
sample, which was prepared in 50%/50% (v/v) ACN/H2O
solution with 0.1% formic acid. The final concentration of
each metabolite for MS was 10 μM. All chemicals and solvents
were obtained from Sigma-Aldrich and Fisher Scientific
Corporation.
E. coli BL21(DE3) cells were cultured at 37 °C with shaking

at 250 rpm in M9 minimum medium with glucose (natural
abundance, 5 g/L) added as the sole carbon source. One liter of
culture at OD 1 was centrifuged at 5000 × g for 20 min at 4 °C,
and the cell pellet was resuspended in 50 mL of 50 mM
phosphate buffer at pH 7.0. The cell suspension was then
subjected to centrifugation for cell pellet collection. The cell
pellet was resuspended in 10 mL of ice-cold water and freeze−
thawed three times. The sample was centrifuged at 20 000 × g
at 4 °C for 15 min to remove cell debris. Prechilled methanol
and chloroform were sequentially added to the supernatant
under vigorous vortexing at an H2O/methanol/chloroform
ratio of 1:1:1 (v/v/v). The mixture was then left at −20 °C
overnight for phase separation. Next, it was centrifuged at

Figure 6. Spin system of an unknown compound from an E. coli cell lysate extracted from 3D HSQC-TOCSY and verified by 2D TOCSY and
2D HSQC-TOCSY (2D TOCSY is not shown). (A) Cross-peaks of the unknown compound shown in 2D HSQC (left, blue cross-peaks) and
2D HSQC-TOCSY (right, blue and red cross-peaks) spectra. (B) Six cross-peaks of the unknown compound depicted in six different 2D slices
(ω1,ω2) at fixed ω3 frequency of the 3D HSQC-TOCSY spectrum (blue symbols, diagonal peaks; red symbols, cross-peaks).
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4000 × g for 20 min at 4 °C, and the clear upper hydrophilic
phase was collected and subjected to rotary evaporation to reduce
the methanol content. Finally, the sample was lyophilized. The
dry sample was then divided into two parts: one for MS and one
for NMR analysis. The NMR sample was prepared by dissolving
the material in 200 μL of D2O with 20 mM phosphate buffer
and 0.1 mM DSS (4,4-dimethyl-4-silapentane-1-sulfonic acid)
for chemical shift referencing, and then transferred to a 3 mm
NMR tube. Then 1.5−2 mg of E. coli cell lysate was dissolved
in 200 μL of H2O, and 10 μL of that was diluted 10-fold with
50%/50% (v/v) ACN/H2O with 0.1% formic acid. The
resulting solution was centrifuged at 13 000 rpm at 4 °C for
5 min, and the supernatant was used for direct-infusion MS.

NMR Experiments and Data Processing

2D 13C−1H HSQC, 2D 1H−1H TOCSY, 2D 13C−1H HSQC-
TOCSY, and 3D 13C−1H HSQC-TOCSY spectra of the
25-compound model mixture and E. coli cell lysate were
collected. All NMR spectra of the 25-compound model mixture
and E. coli cell lysate were acquired with a Bruker AVANCE
solution-state NMR spectrometer equipped with a cryogeni-
cally cooled TCI probe at 850 MHz proton frequency at 298 K.
The 2D 13C−1H HSQC spectra of the 25-compound model
mixture and E. coli cell lysate were collected with 256 t1 and
1024 t2 complex points. The measurement time was ∼2 h. The
spectral width along the indirect and the direct dimensions was
34205.6 and 10204.1 Hz. The number of acquisitions per t1
increment was 8. The transmitter frequency offset was 80 ppm
in the 13C dimension and 4.7 ppm in the 1H dimension. The
2D 1H−1H TOCSY spectra of the 25-compound model
mixture and E. coli cell lysate were collected with 512 t1 and
1024 t2 complex points. The measurement time was ∼4 h. The
spectral width along the indirect and direct dimensions was set
to 10204.1 Hz. The number of acquisitions per t1 increment
was 8. The transmitter frequency offset was 4.7 ppm in both
1H dimensions. The TOCSY mixing time was set to 120 ms
after optimization of the isotropic mixing time (Figure S10).
2D 13C−1H HSQC-TOCSY spectra of the 25-compound
model mixture and E. coli cell lysate were collected with 512 t1
and 2048 t2 complex points. The measurement time was
∼8.5 h. The spectral width along the indirect and the direct
dimensions was 34205.6 and 10204.1 Hz. The TOCSY mixing
time for 2D 13C−1H HSQC-TOCSY was set to 120 ms. The
number of acquisitions per t1 increment was 16. The
transmitter frequency offset was 80 ppm in the 13C dimension
and 4.7 ppm in the 1H dimension. 3D 13C−1H HSQC-TOCSY
spectra of the 25-compound model mixture and E. coli cell
lysate were collected with 64 t1, 128 t2, and 2048 t3 complex
points. The measurement time was ∼113 h. The spectral width
along the indirect and the direct dimensions was 34205.6,
10204.1, and 10204.1 Hz. The number of scans per t1
increment was 8. The transmitter frequency offset was 80 ppm
in the 13C dimension and 4.7 ppm in the 1H dimension. The
data were zero-filled two-fold along the 13C dimension, Fourier
transformed, and phase- and baseline-corrected by use of
NMRPipe.40 Sparky was used for peak-picking in all spectra.41

All spectra were converted to MATLAB format for maximal
clique analysis.

FT-ICR MS Experiments and Processing

A custom-built 9.4 T Fourier transform ion cyclotron reso-
nance mass spectrometer was used for sample analysis.21 A 25
metabolites mixture (10 μM) and E. coli extract sample (in 50%
ACN, 50% water, and 0.1% formic acid) were ionized by positive

or negative nanoelectrospray at a flow rate of 0.3 μL/min and
accumulated in an external linear quadrupole ion trap. Ions
were then transferred through an octopole ion guide to the ICR
cell for broadband and tandem mass spectra acquisition.
The transfer time was set to 0.35 ms for lower mass range
analysis [m/z 107−270] and 0.55 ms for higher mass range
analysis [m/z 265−400]. MS/MS fragmentations for glutamine,
lysine, arginine, and ornithine were performed by infrared
multiphoton dissociation (IRMPD), and precursor ions were
isolated externally with a quadrupole mass filter and internally
by stored waveform inverse Fourier transform (SWIFT)
excitation in the ICR cell.42 IRMPD was performed with a
40 W, 10.6 mm, CO2 laser (Synrad, Mukilteo, WA, USA), fitted
with a 2.5× beam-expander. The laser beam was directed to the
center of the cell through an off-axis BaF2 window. Photon
irradiation was for 500 ms at 40−90% laser power (16−36 W).
MS/MS fragmentation for valine was performed with a Velos
Pro ion trap mass spectrometer with normalized collisional
energy 22 (ThermoFisher parameter setting). Broadband and
tandem mass spectra were acquired from m/z 107−2000,
with a 6 s time-domain acquisition period. Five-hundred time-
domain transients were digitized and signal-averaged. All data
were stored as .DAT files. All time-domain data were Hanning
apodized, zero-filled, and fast Fourier transformed to yield
magnitude-mode mass spectra. Frequency-to-m/z conversion
was performed with a two-term calibration equation.43,44 Mass
calibration was performed by dual spray spanning m/z
112−410. For positive ESI, the custom-prepared standard mix
included cytosine, caffeine, biotin, adenosine, Val-Ala-Pro-Gly,
and [des-Tyr1]-methionine enkephalinamide. For negative ESI,
Agilent ESI-L Low Concentration Tuning Mix (Agilent, Santa
Clara, CA) was used for calibration. After dual spray calibration,
high magnitude peaks (6 peaks for ESI positive mode and
5 peaks for ESI negative mode) in m/z range 112−410 were
chosen as internal standards and used for calibration during
sample direct infusion into the mass spectrometer. Data were
manually interpreted by use of Predator Analysis (version
4.1.9) software.
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Rafael Brüschweiler: 0000-0003-3649-4543
Author Contributions
∥These authors contributed equally.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We thank Felix Hoffmann for performing quantum-chemical
chemical shift calculations for Table S3. This work was
supported by the National Institutes of Health (Grant No.
R01 GM 066041 and SECIM (Southeast Center for Integrated
Metabolomics) Grant No. U24 DK097209-01A1 to R.B.). The
FT-ICR experiments were performed at the National High
Magnetic Field Laboratory, supported by the National Science
Foundation (Grant No. DMR-11-57490). All NMR experi-
ments were performed at the CCIC NMR facility at OSU.

■ REFERENCES
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Brüschweiler, R. Metabolomics beyond spectroscopic databases: a
combined MS/NMR strategy for the rapid identification of new
metabolites in complex mixtures. Anal. Chem. 2015, 87, 3864−70.
(16) Marshall, A. G.; Hendrickson, C. L.; Jackson, G. S. Fourier
transform ion cyclotron resonance mass spectrometry: a primer. Mass
Spectrom. Rev. 1998, 17, 1−35.
(17) Bingol, K.; Zhang, F. L.; Bruschweiler-Li, L.; Brüschweiler, R.
TOCCATA: a customized carbon total correlation spectroscopy NMR
metabolomics database. Anal. Chem. 2012, 84, 9395−9401.
(18) Bingol, K.; Bruschweiler-Li, L.; Li, D. W.; Brüschweiler, R.
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