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Abstract

Enzymatic reactions are crucial to explore the mechanistic function of metabolites and proteins in cellular processes and to understand
the etiology of diseases. The increasing number of interconnected metabolic reactions allows the development of in silico deep learning-
based methods to discover new enzymatic reaction links between metabolites and proteins to further expand the landscape of existing
metabolite–protein interactome. Computational approaches to predict the enzymatic reaction link by metabolite–protein interaction
(MPI) prediction are still very limited. In this study, we developed a Variational Graph Autoencoders (VGAE)-based framework to
predict MPI in genome-scale heterogeneous enzymatic reaction networks across ten organisms. By incorporating molecular features of
metabolites and proteins as well as neighboring information in the MPI networks, our MPI-VGAE predictor achieved the best predictive
performance compared to other machine learning methods. Moreover, when applying the MPI-VGAE framework to reconstruct
hundreds of metabolic pathways, functional enzymatic reaction networks and a metabolite–metabolite interaction network, our
method showed the most robust performance among all scenarios. To the best of our knowledge, this is the first MPI predictor by VGAE
for enzymatic reaction link prediction. Furthermore, we implemented the MPI-VGAE framework to reconstruct the disease-specific
MPI network based on the disrupted metabolites and proteins in Alzheimer’s disease and colorectal cancer, respectively. A substantial
number of novel enzymatic reaction links were identified. We further validated and explored the interactions of these enzymatic
reactions using molecular docking. These results highlight the potential of the MPI-VGAE framework for the discovery of novel disease-
related enzymatic reactions and facilitate the study of the disrupted metabolisms in diseases.
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INTRODUCTION
Characterizing enzymatic reactions is important to understand
biochemical transformations, allosteric inhibition and protein
signaling [1–3]. Enzymatic reactions start with interactions
between metabolites and proteins that occur at the active site of
enzymes and are building blocks for metabolic networks [4, 5].

Functional annotations and characterizations of enzymatic
reactions pave the way to understanding the metabolic mech-
anisms and uncovering associations between metabolomics and
diseases in biomedical research [6, 7]. The rapid advances in
high-throughput metabolomics and proteomics technologies
promote the systematic profiling of metabolites and proteins
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[8–10]. The discovery of novel enzymatic reactions is essential
to investigating their mechanistic roles in cellular metabolisms
and disease progression. Since the interaction of enzyme and
substrate, namely, enzymatic reaction link, is a prerequisite for
an enzymatic reaction, accurate identification of metabolite–
protein interactions (MPIs) would facilitate the discovery of
new enzymatic reactions. Experimental approaches have been
developed to systematically discover enzymatic reaction links
by mapping MPIs in cells [11–13]. For example, 1678 interaction
pairs between 20 designated metabolites and cellular proteins
in Escherichia coli were experimentally determined by mass
spectrometry [11]. High-resolution NMR relaxometry was recently
developed to detect MPIs in biological fluids [14]. Although
these experimental methods offer high reproducibility and
accuracy to characterize enzymatic reaction links, the low
binding affinity of MPIs and labor-intensive sample prepara-
tion hamper the process for large-scale enzymatic reaction
screening.

Recently, a variety of machine learning-based methods have
been developed to predict MPI computationally, while most of
these methods focus on predicting the allosteric interaction
instead of the likelihood of enzymatic reaction [15, 16]. It is
imperative to develop efficient computational approaches to
predict MPI for enzymatic reaction link identification. Thousands
of enzymatic reactions have been cataloged in multiple metabolic
databases such as KEGG, Reactome and PathBank [17–19].
These interconnected graph-based representations of enzymatic
reactions generate genome-scale metabolic networks, while there
are still no computational methods to fully explore the metabolic
reaction networks for MPI prediction.

The prediction of MPI based on the enzymatic reaction
network takes advantage of interconnected features of proteins
and metabolites, which can be formulated as a so-called
‘link prediction’ computational problem [20, 21]. Graph neural
networks (GNNs) integrate the graph topology and node/edge
features and show superb performance of link prediction
than traditional machine learning methods [20, 22, 23]. Graph
neural networks have been widely applied to recognize the link
in network properties of biomolecules ranging from protein
structure prediction, protein–protein interaction networks and
protein–RNA binding, to multi-omics disease studies [24–29].
However, there are no available GNN methods for MPI prediction
within the enzymatic reaction network.

In this study, we constructed a heterogeneous network
of metabolite–protein functional interaction networks from
thousands of enzymatic reactions and developed a Variational
Graph Autoencoders (MPI-VGAE) framework to predict enzymatic
reaction links for different organisms. Ten organism-wise
MPI networks were constructed and MPI prediction with the
VGAE model was trained and optimized. By comparing with
conventional similarity-based and graph-based methods, we
demonstrated that the MPI-VGAE method outperformed other
models for MPI prediction in different genome-scale MPI networks
with the highest AUC and Average precision (AP) scores. The
heterogeneous node features of metabolites and proteins and
neighboring information were well incorporated into the MPI-
VGAE framework via the feature transformation module. We
applied MPI-VGAE framework to multiple scenarios, including
the reconstruction of metabolic pathways, functional metabolic
networks and homogeneous metabolic reaction networks. Finally,
the MPI-VGAE framework was applied to study Alzheimer’s
disease and colorectal cancer to reconstruct the MPI network
by hundreds of disrupted metabolites and proteins. MPI-VGAE

could predict new potential enzymatic reactions, which were
further investigated with the possible binding poses for several
examples. The MPI-VGAE framework will facilitate the discovery
of novel enzymatic reactions in biomedical research.

METHODS
Datasets and characteristics of metabolites and
proteins
In enzymatic reactions, metabolite (substrate) interacts with pro-
tein (enzyme), which is denoted as an enzymatic reaction link in
the present study. The aim of MPI-VGAE is to predict the enzy-
matic reaction link by integrating the molecular information of
metabolites and proteins and the MPI network. To construct a MPI
network, the metabolite–protein interactions were extracted from
all metabolic pathways in PathBank. Each metabolic pathway
contains metabolites and protein information. The metabolite–
protein interaction networks were constructed and specified for
ten organisms separately, such as Homo sapiens. In the MPI net-
work, each metabolite and protein was modeled as a node and
each interaction was modeled as an edge. The classes of pro-
teins and metabolites were characterized and classified by using
BRENDA and RefMet. The dataset curation process is depicted in
Figure 1A. The homogenous metabolic reaction network was con-
structed based on the chemical reactions in the KEGG database.
Metabolites in all pathways of different organisms in the KEGG
database were extracted via KEGG API. In the metabolic reac-
tion network, each metabolite was modeled as a node, and the
metabolite reactants and products in each metabolic reaction
were modeled as edges.

Feature representation of metabolites and
proteins
The vectorized features of metabolites and proteins were
generated as input for the graph-based neural network models.
For metabolites, molecular fingerprints were used to represent
the features of each metabolite. A molecular fingerprint uses a
series of binary digits to indicate the presence or absence of a
particular substructure in the molecule. Three popular molecular
fingerprint representations were considered for comparison,
including the Extended Connectivity Fingerprint (ECFP), MACCS
keys and topological fingerprints [30, 31]. RDKit (https://www.
rdkit.org/) was used to generate molecular fingerprints based
on the SMILES string of each molecule, which yielded a binary
vector with a fixed-length [32]. In addition, the fingerprints of
metabolites were further normalized and transformed by using
principal component analysis (PCA). Essentially, all fingerprints
of 78 726 metabolites were fit by using PCA and transformed
into a 1024-bit vector. For proteins, the raw amino-acid sequence
was used to capture the feature information and converted
into a vector with a length of 1024 based on a pre-trained
SeqVec model and an ESM-1b transformer model [33, 34]. The
SeqVec model is a representation learning model based on the
language model ELMo, taken from natural language processing.
ELMo creates embeddings in 0.03 s per protein sequence,
on average. The state-of-the-art ESM-1b transformer protein
language model is a deep contextual language model trained
on 86 billion amino acids across 250 million protein sequences
spanning evolutionary diversity. The generated features were
used as input for graph neural network-based model training and
optimization.
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Figure 1. Overview of metabolite–protein interactions prediction by Variational Graph Autoencoder. Panel A depicts the construction of the metabolite–
protein interaction (MPI) network and featurization of metabolites and proteins. Panel B depicts the Variational Graph Autoencoder algorithm to predict
MPIs. Adjacency matrix and feature matrix were constructed based on the MPI network and explicit features of metabolites and proteins. The encoder
module takes both the adjacency matrix and feature matrix by two graph convolutional layers, followed by the decoder for the reconstruction of the
adjacency matrix. The likelihood of MPI is computed based on the latent embedding vectors. Panel C depicts the application scenarios of MPI-VGAE
framework, including genome-scale MPI prediction, metabolic pathway reconstruction and reconstruction of disease-associated MPI networks.

Mathematical representation of metabolic
reaction graph
The metabolite–protein interaction network and metabolic reac-
tion network were represented as undirected graph G = (V, A, X)
with N = |V| nodes. For each graph, G was represented by its adja-
cency matrix A ∈ RN×N. A ∈ {1, 0}N×N, where 1 denotes there is an
edge (enzymatic reaction link) between a pair of nodes (metabo-
lite/protein) and 0 otherwise. Given that the reaction direction was
not considered in this study, the graphs were undirected and no
weights between edges were specified. The adjacency matrix A
was symmetric and unweighted. The feature matrix X ∈ RN×D

denotes the node features. The node features consist of both
explicit and latent features. Explicit features are node attributes,
such as the molecular fingerprints of metabolites and vector-
ized representation of proteins. Latent features are the matrix
representations of the graph learned by the graph-embedding
methods. These low-dimensional latent representations preserve
the properties of the graph such as the local neighborhood of
nodes. In the current study, the latent features were used in the
graph-embedding models, including Node2vec and Variational
Graph Autoencoders.

Variational graph autoencoders model
The variational graph autoencoders model is an unsupervised
learning framework for graph-structured data using variational
Bayesian methods. Here, we recapitulate the VGAE model and
illustrate how it incorporates the metabolite and protein fea-
tures for link prediction. The VGAE model first maps the nodes
onto low-dimensional vector features by an encoder and uses a
decoder to reconstruct the original graph topological information.
The encoder of VGAE simultaneously incorporates both node
structural information and attributes by two graph convolutional

layers, as shown below:

GCN (X,A) = ∼
AReLU

(∼
AXW0

)
W1 (1)

∼
A = D− 1

2 AD− 1
2 (2)

where
∼
A is the symmetrically normalized adjacency matrix. The

graph convolutional network (GCN) layer performs convolution on
graphs to extract local substructure features for individual nodes.
Then, it aggregates node-level features into a graph-level feature
vector. The latent distribution is then produced by the encoder as
follows:

μ = GCNμ (X,A) (3)

log σ = GCNσ (X, A) (4)

Z = μ + σ ∗ ε (5)

where ε ∼ N (0, I) and Z denotes the graph-embedding matrix.
Then, the encoder is formulated as

q ( zi| X,A) = N
(
zi|μi, diag

(
σi

2)) (6)

The decoder decodes the embeddings by reconstructing the
graph adjacency matrix:

Âv,u = p
(
Aij = 1|zi, zj

) = S
(
zT

i zj
)

(7)

where S(x) is the sigmoid function. The loss function is a combi-
nation of the reconstruction loss and the KL-divergence:

L = Eq(Z|X,A)

[
logp (A|Z) − KL [q (Z|X, A)

∣∣∣∣p(Z)] (8)
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The workflow of the VGAE model for metabolite–protein inter-
action prediction is shown in Figure 1B. First, a graph of metabo-
lite–protein interactions is constructed. The features of metabo-
lites and proteins are also embedded. Second, the VGAE model
learns the embedding vectors of metabolites and proteins. Lastly,
the interaction of a pair of metabolites and proteins is predicted
based on the learned embedding vectors.

Model training and performance evaluation
During the model training, all the existing edges in the network
were considered as positive examples while all non-existent edges
in the network were considered as negative examples. The model
input consists of a list of the edges with node attributes, i.e. fea-
tures of protein and metabolite, the model output is the probabil-
ity score of whether the edge exists or not. Due to the sparseness
of the MPI and metabolic reaction network, the number of true
positive examples was significantly less than the number of true
negative examples. This would cause an imbalance problem dur-
ing the training process. We applied the undersampling approach
to balance the dataset by considering an equal number of positive
and negative examples during the model training and testing
progress. All the positive and negative edges in the original graph
of each organism were split into training and testing datasets with
a proportion of 80% and 20%, respectively. The training dataset
was used for feature selection, model training and optimization.
Five-fold cross-validation was used for the optimal feature selec-
tion and optimization of parameters. The model generates a pre-
diction score for the edge probability in the node pair. To measure
the performance of the model, the area under the curve (AUC),
receiver operating characteristics (ROC) and precision–recall (PR)
curve were used. The ROC curve was plotted with the true positive
rate (TPR) against the false positive rate (FPR), where TPR is on
the y-axis and FPR is on the x-axis. The higher the AUC, the better
the performance of the model at predicting positive and negative
links. The PR curve was constructed by calculating and plotting
the precision and recall at a variety of thresholds. The Average
Precision (AP), the weighted mean of precisions at each threshold
where the weight is the increase in recall, was used to summarize
the PR curve. The evaluation functions are listed as follows:

Specificity = TN
TN + FP

(9)

Precision = TP
TP + FP

(10)

TPR = Recall = TP
TP + FN

(11)

FPR = 1 − Specificity = FP
TN + FP

(12)

AP =
k=n−1∑

k=0

[
Recalls(k) − Recalls

(
k + 1

)] ∗ Precisions(k) (13)

Recalls(n) = 0, Precisions(n) = 0, n = Number of thresholds (14)

where TP stands for true positive (i.e. the model predicts a link
exists between a pair of nodes and there is a reaction between
a protein and a metabolite in the dataset), FP stands for false
positive, TN stands for true negative (i.e. the model predicts no
link exists between a pair of nodes and there is no reaction
between a protein and a metabolite in the dataset) and FN stands
for false negative.

Model comparison and evaluation
We compared the VGAE model with several baseline machine
learning models, including similarity-based models, random
walk-based models and graph-embedding models. The similarity-
based measure is a type of unsupervised approach that computes
the likelihood of each non-existing link from the similarity
score of two nodes, such as Adamic–Adar and Preferential
Attachment [35, 36]. Spectral clustering was also included in
the baseline models [37]. For graph data, spectral clustering
creates node representations by taking top d eigenvectors of
the normalized Laplacian matrix of the graph. Then, the feature
vector representations of nodes were used for computing the
likelihood of a pair of nodes. Random walk-based methods learn
node representations by generating ‘node sequences’ through
random walks in graphs, as inspired by Natural Language
Processing, which tries to learn word representations from
sentences. Node2vec is a skip-gram-based approach to learning
node embeddings from random walks within a given graph [38].
Graph embedding is a graph representation learning technique
that converts graph data into vectors followed by generating
a representation of nodes in a lower-dimensional space. Since
the embeddings preserve the graph properties such as the local
neighborhood of nodes, the likelihood of a link between two
targeted nodes is computed based on the embeddings of the
nodes. GraphSAGE is an inductive graph neural network model
that incorporates node feature information to efficiently generate
representations on large graph, which was used to as benchmark
model to compare MPI-VGAE [39].

Molecular docking for metabolite–protein
interactions
AutoDock Vina was implemented for protein–metabolite dock-
ing. We selected the predicted enzyme reactions of protein
Cholesterol side-chain cleavage enzyme (CYP11A) and Aldo-
keto reductase family 1 member C4 (AKR1C4) binding with 24-
hydroxycholesterol and 27-hydroxycholesterol, respectively, as
examples. For CYP11A, we used the protein structure from Protein
Data Bank (PDB ID 3N9Z) as starting structure. The original
binding ligands (22-hydroxycholesterol and adrenodoxin) of 3N9Z
were depleted and the interacting sites between ligands and
protein were calculated by distance measure (distance <6 Å). We
then built the simulation box covering all interaction regions and
perform protein–metabolite docking between CYP11A with 24-
hydroxycholesterol or 27-hydroxycholesterol, respectively, using
AutoDock Vina. The docking processes were run 10 times with
random seeds and the conformation with lowest binding affinity
was selected as the representing structure.

For protein AKR1C4, we downloaded the predicted structure
from Alphafold2 Database (averaged pLDDT >90) and constructed
a simulation box covering all proteins to find the most possible
binding pose. The docking was also performed between AKR1C4
structure and 24-hydroxycholesterol or 27-hydroxycholesterol,
respectively, for 10 times. The structure with lowest binding affin-
ity was selected.

RESULTS
Overview of the MPI-VGAE framework
The complete MPI-VGAE framework is depicted in Figure 1. The
genome-scale metabolite–protein interaction networks for differ-
ent organisms were automatically curated based on thousands of
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Table 1. Details of the metabolite–protein interaction network across a variety of organisms

Organisms Number of
nodes

Number of
edges

Average degree Number of
proteins

Number of
metabolites

Homo sapiens 2306 5786 5.02 855 1451
Mus musculus 1664 3826 4.60 469 1195
Rattus norvegicus 1823 4423 4.85 685 1138
Escherichia coli 1811 4288 4.73 440 1371
Bos taurus 1771 4240 4.79 646 1125
Arabidopsis thaliana 1286 2885 4.49 438 848
Drosophila melanogaster 1086 2568 4.73 374 712
Saccharomyces cerevisiae 1125 2629 4.67 308 817
Caenorhabditis elegans 1011 2442 4.83 322 689
Pseudomonas aeruginosa 1280 2935 4.59 328 952

metabolic pathways from PathBank, followed by manual screen-
ing to remove redundant nodes and edges. Explicit node features
included molecular fingerprints of metabolites and sequence-
based features of proteins, which formed a feature matrix. The
Variational Graph Autoencoder model was trained and optimized
by using the adjacency matrix and feature matrix from the MPI
network. The encoder module consisted of double graph convo-
lutional layers, followed by the decoder for the reconstruction of
the adjacency matrix. The likelihood of MPI was computed based
on the embedding vectors. The training hyperparameters of the
MPI-VGAE model are provided in Table S1.

Characteristics of metabolite–protein interaction
networks
The details of metabolites and proteins in the MPI network are
shown in Figure 2. For metabolites, fatty acyls (FA), organic acid
(OA) and nucleic acid (NA) are the most prevalent metabolite
classes, which account for 46% of the total (Figure 2A). Among the
seven enzyme classes (i.e. oxidoreductase, ligase, hydrolase, iso-
merase, lyase, transferase and translocase), transferase and oxi-
doreductase are the two main enzyme categories in all metabolic
pathways (Figure 2B), which suggest that most metabolic reac-
tions involve group transfer reactions and oxidation–reduction
reactions. The node degree represents the number of intercon-
nected nodes in the MPI network. Based on the node degree
distributions in the integrated MPI network of all organisms in
Figure 2C and D, the median links of metabolites and proteins are
3 and 5, respectively. Among all metabolites, 55.4% have degrees
more than three, suggesting that more than half of the metabo-
lites participate in at least three enzymatic reactions. Among all
proteins, 78.5% have degrees more than three, suggesting that
most proteins may catalyze reactions that involve three or more
unique metabolite substrates. There are 258 metabolites (11.2%)
and 256 proteins (10.5%) that have degrees more than 10. It should
be noted that the node degree distributions may vary across
different organisms because of the variation of metabolic path-
ways among different organisms. The details of the metabolite–
protein interaction network for each organism are summarized
in Table 1. The MPI network was visualized by using the Fruchter-
man–Reingold layout. Figure 3 shows an example of the human
MPI network and the characteristics of metabolites and proteins
are provided in Figure S1. The top interconnected metabolites
and proteins with the highest degree are annotated. Essential
metabolites such as ATP, NAD and l-glutamic acid are the most
interconnected metabolites in the MPI network. Cytochromes
P450 family enzymes have the most diverse connections with
metabolites. The detailed MPI network characteristics of each fold
in each organism are provided in Table S2.

Selection of feature representations of
metabolites and proteins
A notable advantage of GNNs is capable to combine the node
attributes with the graph topological features. The molecular
structures of metabolites and proteins are critical to determine
the likelihood of the enzymatic reaction link. Encoding the molec-
ular structure as the node attributes in the MPI network would
enhance the performance of the VGAE model. Given that many
types of numerical representations for structures of metabo-
lites and proteins are available, we examined and selected the
optimal feature representations for the MPI prediction of the
VGAE model. Molecular fingerprints are a kind of fixed-length
of binary vectors to represent the structures of small molecules.
Importantly, they are rapid to generate and thus are selected
as the representation of metabolites. Sequence-based feature
extraction methods were used for proteins. To select the optimal
representations of metabolites and proteins, we used different
types of feature representations to train our VGAE model and
compared the performances of MPI predictions as described pre-
viously. Here, we evaluated the models by different combinations
of three molecular fingerprints and PCA-transformed molecular
fingerprints and two protein embedding models (SeqVec and ESM-
1b transformer). In the training datasets of H. sapiens, 5-fold
cross-validation was performed and the results of each model
are summarized in Table 2. For metabolite features, it was found
that PCA-transformed molecular fingerprints have better perfor-
mance than traditional molecular fingerprints. For proteins, the
SeqVec model performed slightly better than the ESM-1b trans-
former. The combination of ECFP (PCA-transformed) of metabo-
lites and SeqVec of proteins achieved the best result with an AUC
score of 0.930 and an AP score of 0.938. Therefore, the ECFP (PCA-
transformed) and SeqVec were selected to generate features of
metabolites and proteins for model evaluation and application.
In addition, to select the best PCA-transformed dimensionality,
we further tested the MPI prediction performance with different
dimensionality parameters, including 32, 64, 128, 256, 512 and
1024. The results are provided in Table S3. It is shown that the
feature vector with 128-bit achieved the best MPI prediction per-
formance. Therefore, it was selected as the final dimensionality
of prediction in the MPI-VGAE framework.

VGAE model performance and evaluation on
organism-wise MPI networks
After selecting the optimal feature representations of metabolites
and proteins, we trained the MPI-VGAE framework across all ten
organisms and evaluated it on the MPI network in the testing
dataset (Figure S2). Figure 4 shows the performance of MPI-VGAE
on metabolite–protein interaction network of H. sapiens. Figure 4A
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Figure 2. Characteristics of metabolites and proteins in the metabolite–protein interaction network. Panels A and B show the classes of metabolites and
proteins in the metabolite–protein interaction network of all organisms. Panels C and D show the distributions of node degree in the metabolite–protein
interaction network of all organisms.

Figure 3. Metabolite–protein interaction network of Homo sapiens. The orange circle denotes a metabolite and the purple circle denotes a protein. The
size of the circle is proportional to the node degree in the network. The top interconnected nodes are annotated on the graph.
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Table 2. Result of metabolite–protein interaction prediction of Homo sapiens using different representations of protein and metabolite
features

Metabolite feature
(molecular fingerprint)

Protein feature AUC score AP score

ECFP SeqVec 0.921 ± 0.002 0.937 ± 0.001
ECFP (PCA) SeqVec 0.930 ± 0.003 0.938 ± 0.002
MACCS SeqVec 0.915 ± 0.005 0.928 ± 0.008
MACCS (PCA) SeqVec 0.921 ± 0.002 0.934 ± 0.001
Topological SeqVec 0.882 ± 0.013 0.894 ± 0.011
Topological (PCA) SeqVec 0.920 ± 0.001 0.938 ± 0.004
ECFP ESM-1b 0.914 ± 0.005 0.931 ± 0.004
ECFP (PCA) ESM-1b 0.922 ± 0.007 0.937 ± 0.004
MACCS ESM-1b 0.908 ± 0.001 0.924 ± 0.001
MACCS (PCA) ESM-1b 0.917 ± 0.001 0.933 ± 0.003
Topological ESM-1b 0.866 ± 0.007 0.878 ± 0.001
Topological (PCA) ESM-1b 0.912 ± 0.010 0.933 ± 0.004

and B shows the details of training and testing result MPI-VGAE on
the metabolite–protein interaction network of H. sapiens. The vec-
torized input features and graph embeddings of metabolites and
proteins were visualized by a non-linear dimensionality technique
t-distributed stochastic neighbor embedding (t-SNE). t-SNE maps
high-dimensional features to low-dimensional ones by reserv-
ing information during dimension reduction. Figure 4C and D
shows the t-SNE visualization of feature representations and
graph embeddings of metabolites and proteins of H. sapiens in the
VGAE model. The input features of metabolites and proteins were
clearly separated as shown in Figure 4C. Since the VGAE model
weighted the neighborhood node attributes in the MPI network,
the graph embeddings of adjacent metabolites and proteins in the
MPI network were very close (Figure 4D). Figure 4E and F shows
the comparison of ROC and PR curves between MPI-VGAE and
other machine learning models on metabolite–protein interac-
tions of integrated MPI of H. sapiens. The VGAE model embedded
with structural information of metabolites and protein sequence
properties obtained the highest performance (AUC: 0.915, AP:
0.931), which suggests that the node molecular features greatly
enhance the performance in predicting the likelihood of MPI.
Table 3 and Table S4, S5, S6 show all the performance of ROC
and AP scores by multiple machine learning models on different
organisms. The MPI-VGAE with structural information performed
the best across all 10 organisms. Compared with other similarity-
based and graph-based methods, the VGAE model with node
attributes boosted the performance up to 11%, which achieved
AUC scores from 0.787 to 0.924, and AP scores from 0.827 to
0.942 for the 10 organisms. To improve the performance of MPI
prediction, we have integrated the protein–protein interaction
(PPI) and metabolite–metabolite interaction (MMI) information
into the MPI network. By adding more connectivity information
within the MPI network, the MPI-VGAE is capable to make use
of the neighboring information of protein–protein interaction and
metabolite–metabolite interaction. For H. sapiens, the prediction
performance is improved with a ROC score of 0.949 and an AP
score of 0.958 on the test dataset consisting of positive and neg-
ative MPI edges. Due to the variance of the number of metabolic
pathways among different organisms, the node degree distribu-
tions may vary across different organisms. Minor fluctuations of
performance existed in different organisms due to the variation
of the MPI network. For instance, the MPI network of Arabidopsis
thaliana has the lowest average node degree and the performance
of MPI prediction was the worst among all organisms. A possible
reason is that the sparseness of the MPI network affects the
prediction performance of MPI.

Reconstruction of metabolic pathways and
functional MPI networks
Next, we evaluated the ability of the MPI-VGAE models on
metabolite–protein interaction prediction in complicated biolog-
ical systems. The VGAE model was applied to reconstruct the
metabolic pathways followed by the reconstruction of functional
metabolic networks. We selected the pathways with more than
five real metabolite–protein interaction pairs and generated an
equal number of negative pairs randomly by considering the
metabolites/proteins other than true MPI pairs in the testing
dataset. There are 402 metabolic pathways covering most
functional classes of metabolic pathways, such as amino acid
metabolism, carbohydrate metabolism and energy metabolism.
Figure 5A–C shows the distribution of the AUC scores and AP
scores of the reconstructed metabolic pathways by the VGAE
model. The MPI-VGAE achieved average AUC and AP scores of
0.928 and 0.939, respectively. For instance, there are 201 MPIs in
purine metabolism. Our model could successfully predict 100%
of the MPIs. For the negative MPIs randomly generated, the VGAE
model also accurately predicted 84% of the MPIs as negative
cases.

Based on the functional type of each metabolic pathway,
five classes of metabolic networks were constructed, including
the metabolic pathway network in biological systems, disease-
associated metabolic pathway network, drug action metabolism,
drug metabolism and protein/metabolite signaling metabolic
pathways. For each functional metabolic network, 80% of the
positive enzymatic reaction links and an equal number of
negative enzymatic reaction links were used for VGAE model
training and optimization, and 20% of the randomized selected
positive and negative enzymatic reaction links were used for
testing. The details of the functional metabolic networks are
summarized in Table 4. The AUC score and AP score ranged from
0.883 to 0.909, and 0.899 to 0.924, showing that the performance of
the VGAE model is stable across the different functional metabolic
networks.

Prediction of metabolite–metabolite interaction
by VGAE
The metabolic reaction network is a homogenous network
consisting of chemical reactions between metabolites. We
evaluated the effectiveness of the VGAE model to predict the
metabolite–metabolite interactions in the metabolic reaction
network. The metabolic reaction network was constructed
based on the KEGG REACTION database, which consisted of
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Figure 4. Performance of MPI-VGAE on metabolite–protein interaction network of Homo sapiens. Panel A shows the training and validation loss versus
epoch in the MPI-VGAE. Panel B shows the confusion matrix on the metabolite–protein interaction network of H. sapiens. Panel C shows the t-SNE
visualization of explicit feature representation by ECFP molecular fingerprints of metabolites and SeqVec features of proteins. Panel D shows the t-SNE
visualization of graph embeddings of metabolites and proteins by VGAE. Panels E and F show the ROC and PR curves of MPI prediction by different
machine learning models on the test dataset of the metabolite–protein interaction network of H. sapiens. The score of ‘iVGAE+structure’ denotes the
performance of MPI-VGAE when protein–protein interaction and metabolite–metabolite interaction information are added to the MPI network.

Table 3. The AUC scores of metabolite–protein interaction prediction by different machine learning models on a variety of organisms

Organism Spectral
clustering

Adamic–Adar Preferential
attachment

GraphSAGE Node2vec VGAE (no
structure)

VGAE
(structure)

Homo sapiens 0.842 0.521 0.829 0.862 0.880 0.845 0.915
Mus musculus 0.766 0.472 0.816 0.867 0.793 0.814 0.859
Rattus norvegicus 0.824 0.573 0.821 0.821 0.831 0.788 0.895
Escherichia coli 0.741 0.484 0.753 0.780 0.728 0.725 0.787
Bos taurus 0.803 0.570 0.794 0.815 0.844 0.779 0.896
Arabidopsis thaliana 0.785 0.351 0.767 0.794 0.821 0.754 0.797
Drosophila melanogaster 0.748 0.335 0.793 0.751 0.796 0.773 0.851
Saccharomyces cerevisiae 0.763 0.326 0.778 0.823 0.825 0.781 0.835
Caenorhabditis elegans 0.746 0.330 0.817 0.844 0.824 0.788 0.850
Pseudomonas aeruginosa 0.705 0.416 0.845 0.853 0.748 0.810 0.816
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Figure 5. Reconstruction of metabolic pathways by the MPI-VGAE framework and applications of MPI-VGAE to KEGG metabolic reactions. Panel A
shows the box plot of AUC and AP scores of metabolic pathway reconstruction by the VGAE model. To evaluate the metabolic pathway reconstruction
performance of the VGAE model, 402 metabolic pathways from KEGG database were included. Panels B and C show the scatter plot of AUC and AP
scores versus the number of MPIs in the metabolic pathway. Panel D shows the confusion matrix on the metabolic reaction network. Panels E and F
show ROC and PR curve of metabolic reaction prediction by different machine learning models.

Table 4. Results of metabolite-protein interaction prediction
based on the functional classification of MPI network

MPI network Number
of Nodes

Number
of Edges

Average
Degree

AUC
score

AP
score

Disease 1558 4791 6.15 0.890 0.907
Metabolic process 5055 17,506 6.93 0.883 0.901
Drug action 640 1499 6.68 0.909 0.924
Drug metabolism 336 937 5.58 0.883 0.899
Cellular signaling 479 827 3.45 0.909 0.927

2343 nodes with 6889 edges. We compared the performance
of metabolic reaction prediction by different machine learning
models and the result is shown in Figure 5D–F. By including
the molecular structural information of metabolites, the VGAE
model achieved an AUC score of 0.964 and an AP score of 0.962,
which outperformed other similarity-based or embedding-based
models such as ELP. Therefore, by embedding the structural
information of nodes, the VGAE model shows excellent prediction
performance in both homogeneous and heterogeneous biological
networks of different organisms.

Application to the metabolic pathway network
reconstruction in Alzheimer’s disease and
colorectal cancer
Alzheimer’s disease is a progressive neurologic disorder that
is the most common form of dementia. Many proteomics and
metabolomics approaches have been conducted to investigate the
disrupted functions of proteins and dysregulated metabolisms.
We mapped the disease-associated proteins and metabolites that
were induced from DisGeNET database and HMDB databases.

For Alzheimer’s disease, 65 proteins and 86 metabolites were
mapped to the MPI network. MPI-VGAE was applied to predict
the likelihood of enzymatic reaction links of all 5590 metabo-
lite–protein interaction pairs. Eleven known existing pairs of
metabolite–protein interactions such as adenosine and purine
nucleoside phosphorylase exist in the MPI network of Alzheimer’s
disease. MPI-VGAE is able to pinpoint 10 out of 11 known MPIs in
enzymatic reactions accurately. In addition, MPI-VGAE predicts
eight additional enzymatic reactions with high confidence score.
For instance, Cholesterol side-chain cleavage enzyme (CYP11A)
has highly confident interaction with 24-hydroxycholesterol.
Since Cytochrome P450s (CYPs) play critical roles in cholesterol
homeostasis, many CYPs were disrupted in the cholesterol
metabolism and transport in AD that has been investigated by
previous studies [40–43]. Due to the high structural similarity of
CYPs and cholesterol derivatives, the enzymatic reaction initiated
by the metabolite and protein interaction could be altered. The
molecular docking simulates the interaction details between
Cholesterol side-chain cleavage enzyme (CYP11A) binding with
24-hydroxycholesterol (Figure 6B) and 27-hydroxycholesterol
(Figure S3A). We also show the molecular docking results of
protein–ligand structures of protein Aldo-keto reductase family
1 member C4 (AKR1C4) binding with 27-hydroxycholesterol
(Figure 6C) and 24-hydroxycholesterol (Figure S3B).

Colorectal cancer is the third most prevalent, and second most
deadly, cancer worldwide. Integrated analysis of proteomics and
metabolomics has been performed to study the proteomic and
metabolic alterations in a variety of samples such as tissues and
plasma. In total, 81 proteins and 216 metabolites were gathered
from DisGeNET and HMDB databases that were identified to be
related to colorectal cancer. MPI-VGAE was applied to predict all
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Figure 6. Reconstruction of MPI network of Alzheimer’s disease by the MPI-VGAE framework using 65 proteins and 86 metabolites. Panel A shows the
reconstructed MPI network. The green dots denote the disrupted proteins and metabolites in Alzheimer’s disease. The orange dots denote the normal
proteins and metabolites that have enzymatic reactions with the disrupted molecules. The circle size is proportional to the node degree in the MPI
network. The edges denote the interaction between proteins and metabolite (gray edge: known interaction between normal proteins and metabolites,
green edge: known interaction between disrupted proteins and metabolites, red edge: predicted interaction between disrupted proteins and metabolites).
Panel B shows the molecular docking result between Cholesterol side-chain cleavage enzyme (CYP11A) binding with 24-hydroxycholesterol (24HC)
(binding energy:-9.6 kcal/mol). Panel C shows the molecular docking result between Aldo-keto reductase family 1 member C4 (AKR1C4) binding with
27-hydroxycholesterol (27HC) (binding energy: −7.6 kcal/mol).

the possible enzymatic reaction links based on all 17 496 pairs.
MPI-VGAE predicts 37 out 44 known enzymatic reaction links
accurately. Figure S4 shows the reconstructed MPI network of
enzymatic reaction link prediction by MPI-VGAE for colorectal
cancer. The highly confident MPI pairs predicted by MPI-VGAE
for Alzheimer’s disease and colorectal cancer are summarized in
Tables S7 and S8. In sum, the applications to the reconstruction of
enzymatic reaction links for Alzheimer’s disease and colorectal
cancer demonstrate the efficiency and capability of MPI-VGAE to
discover new disease-related enzymatic reactions and metabolic
pathways.

DISCUSSION
In this study, we have developed a graph neural network-based
method to identify metabolite–protein interactions based on
the MPI network. To explore the best feature representations of
metabolites and proteins, we compared different combinations
of feature extraction approaches based on the MPI prediction
performances by the VGAE model. As shown in Table 2, the
best performance was obtained by using the combination of
protein features from SeqVec and metabolite features from
ECFP (PCA-transformed). All the AUC–ROCs were above 0.91
except the combination with topological features of metabolites,
which indicated our predictors were rather robust with different
features. The implementation of the PCA method to transform
the molecular fingerprints further improved the prediction
performances, e.g. ESM-1b with topological features (AUC 0.788
versus 0.914). Given that PCA had learned large-scale molecular
fingerprints over 78 000 metabolites, the PCA-transformed
molecular fingerprints reserved both the features of metabolites
and the feature variance between metabolites. In addition, the
PCA-transformed molecular fingerprints were no longer binary
with 0 or 1 values, which reduced the chance of gradient vanishing
during the training process. Interestingly, the combination with
protein features by SeqVec shows slightly better performance
than features by ESM-1b transformer methods. SeqVec is more
computationally efficient and widely used for the fast feature

extraction of proteins. It generated the same vector length for
proteins with different sequences, which might ignore the size-
dependent properties of proteins.

We also tested the MPI-VGAE model to predict metabolite–
protein interactions in different organisms. Our approach
obtained the best performances across all organisms compared
with other methods. Moreover, MPI-VGAE shows stable perfor-
mance when reconstructing different functional MPI networks.
As shown in Table 4, among all five categories of functional MPI
networks, the AUC scores are always better than 0.88 and AP
scores reach above 0.89. This indicates that the MPI-VGAE method
could be able to predict the MPI network involved in the major
functional classes.

A notable feature of MPI-VGAE is the capability to reconstruct
the MPI network of specific disease based on a list of the disrupted
metabolites and proteins. Furthermore, MPI-VGAE predict the
highly likely new enzymatic reaction links occurring among the
metabolites and proteins, which will facilitate the understanding
of disrupted metabolisms in diseases. For Alzheimer’s disease and
colorectal cancer, MPI-VGAE identified a few potential new enzy-
matic reaction links such as CYP11A and 24-hydroxycholesterol.

Although our MPI-VGAE could achieve the best performance
among all the methods, there are a couple of limitations to our
study. Prediction of MPI facilitates the identification of enzyme–
substrate interaction that paves the way to discover novel enzy-
matic reactions. The complete enzymatic reactions from sub-
strates to products catalyzed by enzymes await further investiga-
tion by experimental measurements. The imbalanced distribution
of positive and negative edges in the network would hamper
the accurate prediction of true positive edges (Figure S5, S6). For
example, high specificity but low precision would be obtained
if the model predicts all MPIs as negative. To reduce the effect
of the imbalanced dataset on the VGAE model, we applied the
downsampling approach to generate the training and testing
dataset and used AUC and AP scores for performance measures.
Hopefully, with the rapidly increasing discovery of protein and
metabolite interactions, the imbalanced dataset issue in the MPI
network will be alleviated.
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CONCLUSION
In this work, we present the variational graph autoencoder
method to predict metabolite–protein interactions based on
the MPI network. When incorporating the node attributes of
metabolites and proteins, the performance of MPI-VGAE achieved
the highest AUC and AP scores in different genome-scale
enzymatic reaction networks. The MPI-VGAE framework also
showed stable and excellent performance in reconstructing the
metabolic pathways and functional MPI network. To the best of
our knowledge, this is the first time that VGAE has been applied
in the MPI network for efficient enzymatic reaction prediction.
By applying MPI-VGAE to identify the enzymatic reaction link
between metabolites and proteins in Alzheimer’s disease and
colorectal cancer, our method could not only find experiment-
proved interactions, but also predict novel and reliable metabolite
reactions which could be crucial for mechanistic investigation of
disease and drug target discovery. We believe that the method will
greatly assist the discovery of novel disease-related enzymatic
reactions and pave the way for genome-scale metabolic pathway
reconstruction by graph neural network approaches.

Key Points

• A comprehensive metabolite–protein interaction (MPI)
database was developed that covers genome-scale het-
erogeneous networks with thousands of enzymatic reac-
tions across 10 organisms.

• An enzymatic reaction link prediction method called
Metabolite–Protein Interaction prediction by Variational
Graph Autoencoders (MPI-VGAE) was developed and
achieved the best performance compared with existing
machine learning methods by encoding molecular fea-
tures of metabolites and proteins.

• The MPI-VGAE framework has been applied in a variety
of scenarios, including the reconstruction of metabolic
pathways, functional enzymatic reaction networks,
metabolic reaction networks, the reconstruction and dis-
covery of novel enzymatic reaction links in Alzheimer’s
disease and colorectal cancer.
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